Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
5 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → 𝐽 ∈ Top ) |
7 |
|
ffvelrn |
⊢ ( ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ 𝐽 ) |
8 |
|
elssuni |
⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ 𝐽 → ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) |
11 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
12 |
11
|
clsval2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
13 |
6 10 12
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
14 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → 𝑋 = ∪ 𝐽 ) |
16 |
13 15
|
eqeq12d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 ↔ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 ) ) |
17 |
|
difeq2 |
⊢ ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ∪ 𝐽 ∖ ∪ 𝐽 ) ) |
18 |
|
difid |
⊢ ( ∪ 𝐽 ∖ ∪ 𝐽 ) = ∅ |
19 |
17 18
|
eqtrdi |
⊢ ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ∅ ) |
20 |
|
difss |
⊢ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 |
21 |
11
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ∈ 𝐽 ) |
22 |
6 20 21
|
sylancl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ∈ 𝐽 ) |
23 |
|
elssuni |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ∪ 𝐽 ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ∪ 𝐽 ) |
25 |
|
dfss4 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) |
26 |
24 25
|
sylib |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) |
27 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
28 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
29 |
28
|
difexd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ∈ V ) |
30 |
29
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ∈ V ) |
31 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑘 ) ) |
32 |
31
|
difeq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
34 |
32 33
|
fvmptg |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ∈ V ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
35 |
27 30 34
|
syl2anr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
36 |
15
|
difeq1d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
37 |
35 36
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) |
39 |
26 38
|
eqtr4d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ) |
40 |
39
|
eqeq1d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ∅ ↔ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
41 |
19 40
|
syl5ib |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
42 |
16 41
|
sylbid |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
43 |
42
|
ralimdva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
44 |
4 43
|
sylan |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
45 |
|
ffvelrn |
⊢ ( ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑥 ∈ ℕ ) → ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) |
46 |
14
|
difeq1d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
48 |
11
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
49 |
5 48
|
sylan |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
50 |
47 49
|
eqeltrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
51 |
45 50
|
sylan2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑥 ∈ ℕ ) ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
52 |
51
|
anassrs |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
53 |
52
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
54 |
4 53
|
sylan |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
55 |
33
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
56 |
54 55
|
sylib |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
57 |
|
nne |
⊢ ( ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) |
58 |
57
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) |
59 |
|
ralnex |
⊢ ( ∀ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) |
60 |
58 59
|
bitr3i |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ↔ ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) |
61 |
1
|
bcth |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ≠ ∅ ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) |
62 |
61
|
3expia |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ≠ ∅ → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) ) |
63 |
62
|
necon1bd |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ ) ) |
64 |
60 63
|
syl5bi |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ ) ) |
65 |
56 64
|
syldan |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ ) ) |
66 |
|
difeq2 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ → ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ∪ 𝐽 ∖ ∅ ) ) |
67 |
28
|
difexd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V ) |
69 |
68
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V ) |
70 |
33
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V → ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) Fn ℕ ) |
71 |
|
fniunfv |
⊢ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) Fn ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) |
72 |
69 70 71
|
3syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) |
73 |
35
|
iuneq2dv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ 𝑘 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
74 |
32
|
cbviunv |
⊢ ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ∪ 𝑘 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) |
75 |
73 74
|
eqtr4di |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
76 |
72 75
|
eqtr3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
77 |
|
iundif2 |
⊢ ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑋 ∖ ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ) |
78 |
76 77
|
eqtrdi |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ( 𝑋 ∖ ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ) ) |
79 |
|
ffn |
⊢ ( 𝑀 : ℕ ⟶ 𝐽 → 𝑀 Fn ℕ ) |
80 |
79
|
adantl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑀 Fn ℕ ) |
81 |
|
fniinfv |
⊢ ( 𝑀 Fn ℕ → ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) = ∩ ran 𝑀 ) |
82 |
80 81
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) = ∩ ran 𝑀 ) |
83 |
82
|
difeq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ∖ ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑋 ∖ ∩ ran 𝑀 ) ) |
84 |
14
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑋 = ∪ 𝐽 ) |
85 |
84
|
difeq1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ∖ ∩ ran 𝑀 ) = ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) |
86 |
78 83 85
|
3eqtrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) |
87 |
86
|
fveq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) |
88 |
87
|
difeq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) ) |
89 |
5
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝐽 ∈ Top ) |
90 |
|
1nn |
⊢ 1 ∈ ℕ |
91 |
|
biidd |
⊢ ( 𝑘 = 1 → ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ) ) |
92 |
|
fnfvelrn |
⊢ ( ( 𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ ran 𝑀 ) |
93 |
80 92
|
sylan |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ ran 𝑀 ) |
94 |
|
intss1 |
⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ran 𝑀 → ∩ ran 𝑀 ⊆ ( 𝑀 ‘ 𝑘 ) ) |
95 |
93 94
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ∩ ran 𝑀 ⊆ ( 𝑀 ‘ 𝑘 ) ) |
96 |
95 10
|
sstrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) |
97 |
96
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ) |
98 |
91 97
|
vtoclga |
⊢ ( 1 ∈ ℕ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ) |
99 |
90 98
|
ax-mp |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) |
100 |
11
|
clsval2 |
⊢ ( ( 𝐽 ∈ Top ∧ ∩ ran 𝑀 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) ) |
101 |
89 99 100
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) ) |
102 |
88 101
|
eqtr4d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) ) |
103 |
|
dif0 |
⊢ ( ∪ 𝐽 ∖ ∅ ) = ∪ 𝐽 |
104 |
103 84
|
eqtr4id |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∪ 𝐽 ∖ ∅ ) = 𝑋 ) |
105 |
102 104
|
eqeq12d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ∪ 𝐽 ∖ ∅ ) ↔ ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
106 |
66 105
|
syl5ib |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
107 |
4 106
|
sylan |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
108 |
44 65 107
|
3syld |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
109 |
108
|
3impia |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) |