Metamath Proof Explorer


Theorem bcth3

Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014)

Ref Expression
Hypothesis bcth.2 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion bcth3 ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 bcth.2 𝐽 = ( MetOpen ‘ 𝐷 )
2 cmetmet ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
3 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
4 2 3 syl ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
5 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
6 5 ad2antrr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → 𝐽 ∈ Top )
7 ffvelrn ( ( 𝑀 : ℕ ⟶ 𝐽𝑘 ∈ ℕ ) → ( 𝑀𝑘 ) ∈ 𝐽 )
8 elssuni ( ( 𝑀𝑘 ) ∈ 𝐽 → ( 𝑀𝑘 ) ⊆ 𝐽 )
9 7 8 syl ( ( 𝑀 : ℕ ⟶ 𝐽𝑘 ∈ ℕ ) → ( 𝑀𝑘 ) ⊆ 𝐽 )
10 9 adantll ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀𝑘 ) ⊆ 𝐽 )
11 eqid 𝐽 = 𝐽
12 11 clsval2 ( ( 𝐽 ∈ Top ∧ ( 𝑀𝑘 ) ⊆ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) )
13 6 10 12 syl2anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) )
14 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
15 14 ad2antrr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → 𝑋 = 𝐽 )
16 13 15 eqeq12d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = 𝑋 ↔ ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) = 𝐽 ) )
17 difeq2 ( ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) ) = ( 𝐽 𝐽 ) )
18 difid ( 𝐽 𝐽 ) = ∅
19 17 18 eqtrdi ( ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) ) = ∅ )
20 difss ( 𝐽 ∖ ( 𝑀𝑘 ) ) ⊆ 𝐽
21 11 ntropn ( ( 𝐽 ∈ Top ∧ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ⊆ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ∈ 𝐽 )
22 6 20 21 sylancl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ∈ 𝐽 )
23 elssuni ( ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ⊆ 𝐽 )
24 22 23 syl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ⊆ 𝐽 )
25 dfss4 ( ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ⊆ 𝐽 ↔ ( 𝐽 ∖ ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) )
26 24 25 sylib ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐽 ∖ ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) )
27 id ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ )
28 elfvdm ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met )
29 28 difexd ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀𝑘 ) ) ∈ V )
30 29 adantr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ∖ ( 𝑀𝑘 ) ) ∈ V )
31 fveq2 ( 𝑥 = 𝑘 → ( 𝑀𝑥 ) = ( 𝑀𝑘 ) )
32 31 difeq2d ( 𝑥 = 𝑘 → ( 𝑋 ∖ ( 𝑀𝑥 ) ) = ( 𝑋 ∖ ( 𝑀𝑘 ) ) )
33 eqid ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) )
34 32 33 fvmptg ( ( 𝑘 ∈ ℕ ∧ ( 𝑋 ∖ ( 𝑀𝑘 ) ) ∈ V ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑋 ∖ ( 𝑀𝑘 ) ) )
35 27 30 34 syl2anr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑋 ∖ ( 𝑀𝑘 ) ) )
36 15 difeq1d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀𝑘 ) ) = ( 𝐽 ∖ ( 𝑀𝑘 ) ) )
37 35 36 eqtrd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) = ( 𝐽 ∖ ( 𝑀𝑘 ) ) )
38 37 fveq2d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) )
39 26 38 eqtr4d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐽 ∖ ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) )
40 39 eqeq1d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐽 ∖ ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) ) = ∅ ↔ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) )
41 19 40 syl5ib ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ∖ ( 𝑀𝑘 ) ) ) ) = 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) )
42 16 41 sylbid ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = 𝑋 → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) )
43 42 ralimdva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = 𝑋 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) )
44 4 43 sylan ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = 𝑋 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) )
45 ffvelrn ( ( 𝑀 : ℕ ⟶ 𝐽𝑥 ∈ ℕ ) → ( 𝑀𝑥 ) ∈ 𝐽 )
46 14 difeq1d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀𝑥 ) ) = ( 𝐽 ∖ ( 𝑀𝑥 ) ) )
47 46 adantr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀𝑥 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑀𝑥 ) ) = ( 𝐽 ∖ ( 𝑀𝑥 ) ) )
48 11 opncld ( ( 𝐽 ∈ Top ∧ ( 𝑀𝑥 ) ∈ 𝐽 ) → ( 𝐽 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) )
49 5 48 sylan ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀𝑥 ) ∈ 𝐽 ) → ( 𝐽 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) )
50 47 49 eqeltrd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀𝑥 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) )
51 45 50 sylan2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 : ℕ ⟶ 𝐽𝑥 ∈ ℕ ) ) → ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) )
52 51 anassrs ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) )
53 52 ralrimiva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) )
54 4 53 sylan ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) )
55 33 fmpt ( ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) )
56 54 55 sylib ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) )
57 nne ( ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ )
58 57 ralbii ( ∀ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ )
59 ralnex ( ∀ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ )
60 58 59 bitr3i ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ↔ ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ )
61 1 bcth ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) ≠ ∅ ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ )
62 61 3expia ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) ≠ ∅ → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) )
63 62 necon1bd ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ → ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) = ∅ ) )
64 60 63 syl5bi ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) = ∅ ) )
65 56 64 syldan ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) = ∅ ) )
66 difeq2 ( ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) = ∅ → ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) ) = ( 𝐽 ∖ ∅ ) )
67 28 difexd ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ V )
68 67 ad2antrr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ V )
69 68 ralrimiva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ V )
70 33 fnmpt ( ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ∈ V → ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) Fn ℕ )
71 fniunfv ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) Fn ℕ → 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) = ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) )
72 69 70 71 3syl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) = ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) )
73 35 iuneq2dv ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) = 𝑘 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑘 ) ) )
74 32 cbviunv 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) = 𝑘 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑘 ) )
75 73 74 eqtr4di ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ‘ 𝑘 ) = 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) )
76 72 75 eqtr3d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) = 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) )
77 iundif2 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀𝑥 ) ) = ( 𝑋 𝑥 ∈ ℕ ( 𝑀𝑥 ) )
78 76 77 eqtrdi ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) = ( 𝑋 𝑥 ∈ ℕ ( 𝑀𝑥 ) ) )
79 ffn ( 𝑀 : ℕ ⟶ 𝐽𝑀 Fn ℕ )
80 79 adantl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑀 Fn ℕ )
81 fniinfv ( 𝑀 Fn ℕ → 𝑥 ∈ ℕ ( 𝑀𝑥 ) = ran 𝑀 )
82 80 81 syl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑥 ∈ ℕ ( 𝑀𝑥 ) = ran 𝑀 )
83 82 difeq2d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 𝑥 ∈ ℕ ( 𝑀𝑥 ) ) = ( 𝑋 ran 𝑀 ) )
84 14 adantr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑋 = 𝐽 )
85 84 difeq1d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ran 𝑀 ) = ( 𝐽 ran 𝑀 ) )
86 78 83 85 3eqtrd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) = ( 𝐽 ran 𝑀 ) )
87 86 fveq2d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ran 𝑀 ) ) )
88 87 difeq2d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) ) = ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ran 𝑀 ) ) ) )
89 5 adantr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝐽 ∈ Top )
90 1nn 1 ∈ ℕ
91 biidd ( 𝑘 = 1 → ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran 𝑀 𝐽 ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran 𝑀 𝐽 ) ) )
92 fnfvelrn ( ( 𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑀𝑘 ) ∈ ran 𝑀 )
93 80 92 sylan ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀𝑘 ) ∈ ran 𝑀 )
94 intss1 ( ( 𝑀𝑘 ) ∈ ran 𝑀 ran 𝑀 ⊆ ( 𝑀𝑘 ) )
95 93 94 syl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ran 𝑀 ⊆ ( 𝑀𝑘 ) )
96 95 10 sstrd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ran 𝑀 𝐽 )
97 96 expcom ( 𝑘 ∈ ℕ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran 𝑀 𝐽 ) )
98 91 97 vtoclga ( 1 ∈ ℕ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran 𝑀 𝐽 ) )
99 90 98 ax-mp ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ran 𝑀 𝐽 )
100 11 clsval2 ( ( 𝐽 ∈ Top ∧ ran 𝑀 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ran 𝑀 ) ) ) )
101 89 99 100 syl2anc ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝐽 ran 𝑀 ) ) ) )
102 88 101 eqtr4d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) )
103 dif0 ( 𝐽 ∖ ∅ ) = 𝐽
104 103 84 eqtr4id ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝐽 ∖ ∅ ) = 𝑋 )
105 102 104 eqeq12d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) ) = ( 𝐽 ∖ ∅ ) ↔ ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = 𝑋 ) )
106 66 105 syl5ib ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) = ∅ → ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = 𝑋 ) )
107 4 106 sylan ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀𝑥 ) ) ) ) = ∅ → ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = 𝑋 ) )
108 44 65 107 3syld ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = 𝑋 → ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = 𝑋 ) )
109 108 3impia ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ran 𝑀 ) = 𝑋 )