| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcth.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
bcthlem.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 3 |
|
bcthlem.5 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) |
| 4 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ ) |
| 5 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ dom CMet ) |
| 7 |
|
reex |
⊢ ℝ ∈ V |
| 8 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 9 |
7 8
|
ssexi |
⊢ ℝ+ ∈ V |
| 10 |
|
xpexg |
⊢ ( ( 𝑋 ∈ dom CMet ∧ ℝ+ ∈ V ) → ( 𝑋 × ℝ+ ) ∈ V ) |
| 11 |
6 9 10
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 × ℝ+ ) ∈ V ) |
| 12 |
|
ssexg |
⊢ ( ( { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ ) ∧ ( 𝑋 × ℝ+ ) ∈ V ) → { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ∈ V ) |
| 13 |
4 11 12
|
sylancr |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ∈ V ) |
| 14 |
|
oveq2 |
⊢ ( 𝑘 = 𝐴 → ( 1 / 𝑘 ) = ( 1 / 𝐴 ) ) |
| 15 |
14
|
breq2d |
⊢ ( 𝑘 = 𝐴 → ( 𝑟 < ( 1 / 𝑘 ) ↔ 𝑟 < ( 1 / 𝐴 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝐴 ) ) |
| 17 |
16
|
difeq2d |
⊢ ( 𝑘 = 𝐴 → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) = ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) |
| 18 |
17
|
sseq2d |
⊢ ( 𝑘 = 𝐴 → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 19 |
15 18
|
anbi12d |
⊢ ( 𝑘 = 𝐴 → ( ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ↔ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑘 = 𝐴 → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) |
| 21 |
20
|
opabbidv |
⊢ ( 𝑘 = 𝐴 → { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) |
| 22 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) = ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ) |
| 23 |
22
|
difeq1d |
⊢ ( 𝑧 = 𝐵 → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) = ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) |
| 24 |
23
|
sseq2d |
⊢ ( 𝑧 = 𝐵 → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 25 |
24
|
anbi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ↔ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 26 |
25
|
anbi2d |
⊢ ( 𝑧 = 𝐵 → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) |
| 27 |
26
|
opabbidv |
⊢ ( 𝑧 = 𝐵 → { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) |
| 28 |
21 27 3
|
ovmpog |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ∧ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ∈ V ) → ( 𝐴 𝐹 𝐵 ) = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) |
| 29 |
13 28
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ∧ 𝜑 ) → ( 𝐴 𝐹 𝐵 ) = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) |
| 30 |
29
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝜑 ) → ( 𝐴 𝐹 𝐵 ) = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) |
| 31 |
30
|
ancoms |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐴 𝐹 𝐵 ) = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) |
| 32 |
31
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ 𝐶 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) ) |
| 33 |
4
|
sseli |
⊢ ( 𝐶 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } → 𝐶 ∈ ( 𝑋 × ℝ+ ) ) |
| 34 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) → 𝐶 ∈ ( 𝑋 × ℝ+ ) ) |
| 35 |
|
1st2nd2 |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → 𝐶 = 〈 ( 1st ‘ 𝐶 ) , ( 2nd ‘ 𝐶 ) 〉 ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ↔ 〈 ( 1st ‘ 𝐶 ) , ( 2nd ‘ 𝐶 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ) ) |
| 37 |
|
fvex |
⊢ ( 1st ‘ 𝐶 ) ∈ V |
| 38 |
|
fvex |
⊢ ( 2nd ‘ 𝐶 ) ∈ V |
| 39 |
|
eleq1 |
⊢ ( 𝑥 = ( 1st ‘ 𝐶 ) → ( 𝑥 ∈ 𝑋 ↔ ( 1st ‘ 𝐶 ) ∈ 𝑋 ) ) |
| 40 |
|
eleq1 |
⊢ ( 𝑟 = ( 2nd ‘ 𝐶 ) → ( 𝑟 ∈ ℝ+ ↔ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ) |
| 41 |
39 40
|
bi2anan9 |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ↔ ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → 𝑟 = ( 2nd ‘ 𝐶 ) ) |
| 43 |
42
|
breq1d |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → ( 𝑟 < ( 1 / 𝐴 ) ↔ ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ) ) |
| 44 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) |
| 45 |
44
|
fveq2d |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ) |
| 46 |
45
|
sseq1d |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 47 |
43 46
|
anbi12d |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → ( ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ↔ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 48 |
41 47
|
anbi12d |
⊢ ( ( 𝑥 = ( 1st ‘ 𝐶 ) ∧ 𝑟 = ( 2nd ‘ 𝐶 ) ) → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ↔ ( ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) |
| 49 |
37 38 48
|
opelopaba |
⊢ ( 〈 ( 1st ‘ 𝐶 ) , ( 2nd ‘ 𝐶 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ↔ ( ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 50 |
36 49
|
bitrdi |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ↔ ( ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) |
| 51 |
35
|
eleq1d |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ↔ 〈 ( 1st ‘ 𝐶 ) , ( 2nd ‘ 𝐶 ) 〉 ∈ ( 𝑋 × ℝ+ ) ) ) |
| 52 |
|
opelxp |
⊢ ( 〈 ( 1st ‘ 𝐶 ) , ( 2nd ‘ 𝐶 ) 〉 ∈ ( 𝑋 × ℝ+ ) ↔ ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ) |
| 53 |
51 52
|
bitr2di |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ↔ 𝐶 ∈ ( 𝑋 × ℝ+ ) ) ) |
| 54 |
|
df-ov |
⊢ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝐶 ) , ( 2nd ‘ 𝐶 ) 〉 ) |
| 55 |
35
|
fveq2d |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝐶 ) , ( 2nd ‘ 𝐶 ) 〉 ) ) |
| 56 |
54 55
|
eqtr4id |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) = ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ) |
| 58 |
57
|
sseq1d |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 59 |
58
|
anbi2d |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ↔ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 60 |
53 59
|
anbi12d |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) |
| 61 |
|
3anass |
⊢ ( ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 62 |
60 61
|
bitr4di |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( ( 1st ‘ 𝐶 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd ‘ 𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 63 |
50 62
|
bitrd |
⊢ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 64 |
33 34 63
|
pm5.21nii |
⊢ ( 𝐶 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) } ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 65 |
32 64
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ 𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |