Metamath Proof Explorer


Theorem bcthlem1

Description: Lemma for bcth . Substitutions for the function F . (Contributed by Mario Carneiro, 9-Jan-2014)

Ref Expression
Hypotheses bcth.2 𝐽 = ( MetOpen ‘ 𝐷 )
bcthlem.4 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
bcthlem.5 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } )
Assertion bcthlem1 ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 bcth.2 𝐽 = ( MetOpen ‘ 𝐷 )
2 bcthlem.4 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
3 bcthlem.5 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } )
4 opabssxp { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ )
5 elfvdm ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet )
6 2 5 syl ( 𝜑𝑋 ∈ dom CMet )
7 reex ℝ ∈ V
8 rpssre + ⊆ ℝ
9 7 8 ssexi + ∈ V
10 xpexg ( ( 𝑋 ∈ dom CMet ∧ ℝ+ ∈ V ) → ( 𝑋 × ℝ+ ) ∈ V )
11 6 9 10 sylancl ( 𝜑 → ( 𝑋 × ℝ+ ) ∈ V )
12 ssexg ( ( { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ ) ∧ ( 𝑋 × ℝ+ ) ∈ V ) → { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ∈ V )
13 4 11 12 sylancr ( 𝜑 → { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ∈ V )
14 oveq2 ( 𝑘 = 𝐴 → ( 1 / 𝑘 ) = ( 1 / 𝐴 ) )
15 14 breq2d ( 𝑘 = 𝐴 → ( 𝑟 < ( 1 / 𝑘 ) ↔ 𝑟 < ( 1 / 𝐴 ) ) )
16 fveq2 ( 𝑘 = 𝐴 → ( 𝑀𝑘 ) = ( 𝑀𝐴 ) )
17 16 difeq2d ( 𝑘 = 𝐴 → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) = ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) )
18 17 sseq2d ( 𝑘 = 𝐴 → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ) )
19 15 18 anbi12d ( 𝑘 = 𝐴 → ( ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ↔ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ) ) )
20 19 anbi2d ( 𝑘 = 𝐴 → ( ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ↔ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ) ) ) )
21 20 opabbidv ( 𝑘 = 𝐴 → { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ) ) } )
22 fveq2 ( 𝑧 = 𝐵 → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) = ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) )
23 22 difeq1d ( 𝑧 = 𝐵 → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) = ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) )
24 23 sseq2d ( 𝑧 = 𝐵 → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) )
25 24 anbi2d ( 𝑧 = 𝐵 → ( ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ) ↔ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )
26 25 anbi2d ( 𝑧 = 𝐵 → ( ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ) ) ↔ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) ) )
27 26 opabbidv ( 𝑧 = 𝐵 → { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝐴 ) ) ) ) } = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } )
28 21 27 3 ovmpog ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ∧ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ∈ V ) → ( 𝐴 𝐹 𝐵 ) = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } )
29 13 28 syl3an3 ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ∧ 𝜑 ) → ( 𝐴 𝐹 𝐵 ) = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } )
30 29 3expa ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝜑 ) → ( 𝐴 𝐹 𝐵 ) = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } )
31 30 ancoms ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐴 𝐹 𝐵 ) = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } )
32 31 eleq2d ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ 𝐶 ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ) )
33 4 sseli ( 𝐶 ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } → 𝐶 ∈ ( 𝑋 × ℝ+ ) )
34 simp1 ( ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) → 𝐶 ∈ ( 𝑋 × ℝ+ ) )
35 1st2nd2 ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → 𝐶 = ⟨ ( 1st𝐶 ) , ( 2nd𝐶 ) ⟩ )
36 35 eleq1d ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ↔ ⟨ ( 1st𝐶 ) , ( 2nd𝐶 ) ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ) )
37 fvex ( 1st𝐶 ) ∈ V
38 fvex ( 2nd𝐶 ) ∈ V
39 eleq1 ( 𝑥 = ( 1st𝐶 ) → ( 𝑥𝑋 ↔ ( 1st𝐶 ) ∈ 𝑋 ) )
40 eleq1 ( 𝑟 = ( 2nd𝐶 ) → ( 𝑟 ∈ ℝ+ ↔ ( 2nd𝐶 ) ∈ ℝ+ ) )
41 39 40 bi2anan9 ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ↔ ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) ) )
42 simpr ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → 𝑟 = ( 2nd𝐶 ) )
43 42 breq1d ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → ( 𝑟 < ( 1 / 𝐴 ) ↔ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ) )
44 oveq12 ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) )
45 44 fveq2d ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) )
46 45 sseq1d ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) )
47 43 46 anbi12d ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → ( ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ↔ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )
48 41 47 anbi12d ( ( 𝑥 = ( 1st𝐶 ) ∧ 𝑟 = ( 2nd𝐶 ) ) → ( ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) ↔ ( ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) ) )
49 37 38 48 opelopaba ( ⟨ ( 1st𝐶 ) , ( 2nd𝐶 ) ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ↔ ( ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )
50 36 49 bitrdi ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ↔ ( ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) ) )
51 35 eleq1d ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ↔ ⟨ ( 1st𝐶 ) , ( 2nd𝐶 ) ⟩ ∈ ( 𝑋 × ℝ+ ) ) )
52 opelxp ( ⟨ ( 1st𝐶 ) , ( 2nd𝐶 ) ⟩ ∈ ( 𝑋 × ℝ+ ) ↔ ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) )
53 51 52 bitr2di ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) ↔ 𝐶 ∈ ( 𝑋 × ℝ+ ) ) )
54 df-ov ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) = ( ( ball ‘ 𝐷 ) ‘ ⟨ ( 1st𝐶 ) , ( 2nd𝐶 ) ⟩ )
55 35 fveq2d ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) = ( ( ball ‘ 𝐷 ) ‘ ⟨ ( 1st𝐶 ) , ( 2nd𝐶 ) ⟩ ) )
56 54 55 eqtr4id ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) = ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )
57 56 fveq2d ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) )
58 57 sseq1d ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) )
59 58 anbi2d ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ↔ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )
60 53 59 anbi12d ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) ) )
61 3anass ( ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )
62 60 61 bitr4di ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( ( ( ( 1st𝐶 ) ∈ 𝑋 ∧ ( 2nd𝐶 ) ∈ ℝ+ ) ∧ ( ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( 1st𝐶 ) ( ball ‘ 𝐷 ) ( 2nd𝐶 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )
63 50 62 bitrd ( 𝐶 ∈ ( 𝑋 × ℝ+ ) → ( 𝐶 ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )
64 33 34 63 pm5.21nii ( 𝐶 ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) } ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) )
65 32 64 bitrdi ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝐶 ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd𝐶 ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ∖ ( 𝑀𝐴 ) ) ) ) )