Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
bcthlem.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
3 |
|
bcthlem.5 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) |
4 |
|
bcthlem.6 |
⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
5 |
|
bcthlem.7 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
6 |
|
bcthlem.8 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
7 |
|
bcthlem.9 |
⊢ ( 𝜑 → 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
8 |
|
bcthlem.10 |
⊢ ( 𝜑 → ( 𝑔 ‘ 1 ) = 〈 𝐶 , 𝑅 〉 ) |
9 |
|
bcthlem.11 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) |
10 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝐴 → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) |
11 |
|
id |
⊢ ( 𝑘 = 𝐴 → 𝑘 = 𝐴 ) |
12 |
|
fveq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝐴 ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑘 = 𝐴 → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) |
14 |
10 13
|
eleq12d |
⊢ ( 𝑘 = 𝐴 → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) ) |
15 |
14
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ∧ 𝐴 ∈ ℕ ) → ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) |
16 |
9 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) |
17 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑔 ‘ 𝐴 ) ∈ ( 𝑋 × ℝ+ ) ) |
18 |
1 2 3
|
bcthlem1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ ( 𝑔 ‘ 𝐴 ) ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ↔ ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
19 |
18
|
expr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝑔 ‘ 𝐴 ) ∈ ( 𝑋 × ℝ+ ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ↔ ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) |
20 |
17 19
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ↔ ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
21 |
16 20
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) |
22 |
21
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) |
23 |
22
|
difss2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
24 |
23
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝐴 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
25 |
|
peano2nn |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) |
26 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
27 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
28 |
2 26 27
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
29 |
1 2 3 4 5 6 7 8 9
|
bcthlem2 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
30 |
28 7 29 1
|
caublcls |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ ( 𝐴 + 1 ) ∈ ℕ ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ) |
31 |
25 30
|
syl3an3 |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝐴 ∈ ℕ ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ) |
32 |
24 31
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝐴 ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |