Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
β’ π½ = ( MetOpen β π· ) |
2 |
|
bcthlem.4 |
β’ ( π β π· β ( CMet β π ) ) |
3 |
|
bcthlem.5 |
β’ πΉ = ( π β β , π§ β ( π Γ β+ ) β¦ { β¨ π₯ , π β© β£ ( ( π₯ β π β§ π β β+ ) β§ ( π < ( 1 / π ) β§ ( ( cls β π½ ) β ( π₯ ( ball β π· ) π ) ) β ( ( ( ball β π· ) β π§ ) β ( π β π ) ) ) ) } ) |
4 |
|
bcthlem.6 |
β’ ( π β π : β βΆ ( Clsd β π½ ) ) |
5 |
|
bcthlem.7 |
β’ ( π β π
β β+ ) |
6 |
|
bcthlem.8 |
β’ ( π β πΆ β π ) |
7 |
|
bcthlem.9 |
β’ ( π β π : β βΆ ( π Γ β+ ) ) |
8 |
|
bcthlem.10 |
β’ ( π β ( π β 1 ) = β¨ πΆ , π
β© ) |
9 |
|
bcthlem.11 |
β’ ( π β β π β β ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) ) |
10 |
|
cmetmet |
β’ ( π· β ( CMet β π ) β π· β ( Met β π ) ) |
11 |
2 10
|
syl |
β’ ( π β π· β ( Met β π ) ) |
12 |
|
metxmet |
β’ ( π· β ( Met β π ) β π· β ( βMet β π ) ) |
13 |
11 12
|
syl |
β’ ( π β π· β ( βMet β π ) ) |
14 |
1 2 3 4 5 6 7 8 9
|
bcthlem2 |
β’ ( π β β π β β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) β ( ( ball β π· ) β ( π β π ) ) ) |
15 |
|
elrp |
β’ ( π β β+ β ( π β β β§ 0 < π ) ) |
16 |
|
nnrecl |
β’ ( ( π β β β§ 0 < π ) β β π β β ( 1 / π ) < π ) |
17 |
15 16
|
sylbi |
β’ ( π β β+ β β π β β ( 1 / π ) < π ) |
18 |
17
|
adantl |
β’ ( ( π β§ π β β+ ) β β π β β ( 1 / π ) < π ) |
19 |
|
peano2nn |
β’ ( π β β β ( π + 1 ) β β ) |
20 |
19
|
adantl |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β ( π + 1 ) β β ) |
21 |
|
fvoveq1 |
β’ ( π = π β ( π β ( π + 1 ) ) = ( π β ( π + 1 ) ) ) |
22 |
|
id |
β’ ( π = π β π = π ) |
23 |
|
fveq2 |
β’ ( π = π β ( π β π ) = ( π β π ) ) |
24 |
22 23
|
oveq12d |
β’ ( π = π β ( π πΉ ( π β π ) ) = ( π πΉ ( π β π ) ) ) |
25 |
21 24
|
eleq12d |
β’ ( π = π β ( ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) β ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) ) ) |
26 |
25
|
rspccva |
β’ ( ( β π β β ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) β§ π β β ) β ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) ) |
27 |
9 26
|
sylan |
β’ ( ( π β§ π β β ) β ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) ) |
28 |
7
|
ffvelcdmda |
β’ ( ( π β§ π β β ) β ( π β π ) β ( π Γ β+ ) ) |
29 |
1 2 3
|
bcthlem1 |
β’ ( ( π β§ ( π β β β§ ( π β π ) β ( π Γ β+ ) ) ) β ( ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) β ( ( π β ( π + 1 ) ) β ( π Γ β+ ) β§ ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) β§ ( ( cls β π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) ) ) |
30 |
29
|
expr |
β’ ( ( π β§ π β β ) β ( ( π β π ) β ( π Γ β+ ) β ( ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) β ( ( π β ( π + 1 ) ) β ( π Γ β+ ) β§ ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) β§ ( ( cls β π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) ) ) ) |
31 |
28 30
|
mpd |
β’ ( ( π β§ π β β ) β ( ( π β ( π + 1 ) ) β ( π πΉ ( π β π ) ) β ( ( π β ( π + 1 ) ) β ( π Γ β+ ) β§ ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) β§ ( ( cls β π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) ) ) |
32 |
27 31
|
mpbid |
β’ ( ( π β§ π β β ) β ( ( π β ( π + 1 ) ) β ( π Γ β+ ) β§ ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) β§ ( ( cls β π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) ) |
33 |
32
|
simp2d |
β’ ( ( π β§ π β β ) β ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) ) |
34 |
33
|
adantlr |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) ) |
35 |
32
|
simp1d |
β’ ( ( π β§ π β β ) β ( π β ( π + 1 ) ) β ( π Γ β+ ) ) |
36 |
|
xp2nd |
β’ ( ( π β ( π + 1 ) ) β ( π Γ β+ ) β ( 2nd β ( π β ( π + 1 ) ) ) β β+ ) |
37 |
35 36
|
syl |
β’ ( ( π β§ π β β ) β ( 2nd β ( π β ( π + 1 ) ) ) β β+ ) |
38 |
37
|
rpred |
β’ ( ( π β§ π β β ) β ( 2nd β ( π β ( π + 1 ) ) ) β β ) |
39 |
38
|
adantlr |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β ( 2nd β ( π β ( π + 1 ) ) ) β β ) |
40 |
|
nnrecre |
β’ ( π β β β ( 1 / π ) β β ) |
41 |
40
|
adantl |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β ( 1 / π ) β β ) |
42 |
|
rpre |
β’ ( π β β+ β π β β ) |
43 |
42
|
ad2antlr |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β π β β ) |
44 |
|
lttr |
β’ ( ( ( 2nd β ( π β ( π + 1 ) ) ) β β β§ ( 1 / π ) β β β§ π β β ) β ( ( ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) β§ ( 1 / π ) < π ) β ( 2nd β ( π β ( π + 1 ) ) ) < π ) ) |
45 |
39 41 43 44
|
syl3anc |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β ( ( ( 2nd β ( π β ( π + 1 ) ) ) < ( 1 / π ) β§ ( 1 / π ) < π ) β ( 2nd β ( π β ( π + 1 ) ) ) < π ) ) |
46 |
34 45
|
mpand |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β ( ( 1 / π ) < π β ( 2nd β ( π β ( π + 1 ) ) ) < π ) ) |
47 |
|
2fveq3 |
β’ ( π = ( π + 1 ) β ( 2nd β ( π β π ) ) = ( 2nd β ( π β ( π + 1 ) ) ) ) |
48 |
47
|
breq1d |
β’ ( π = ( π + 1 ) β ( ( 2nd β ( π β π ) ) < π β ( 2nd β ( π β ( π + 1 ) ) ) < π ) ) |
49 |
48
|
rspcev |
β’ ( ( ( π + 1 ) β β β§ ( 2nd β ( π β ( π + 1 ) ) ) < π ) β β π β β ( 2nd β ( π β π ) ) < π ) |
50 |
20 46 49
|
syl6an |
β’ ( ( ( π β§ π β β+ ) β§ π β β ) β ( ( 1 / π ) < π β β π β β ( 2nd β ( π β π ) ) < π ) ) |
51 |
50
|
rexlimdva |
β’ ( ( π β§ π β β+ ) β ( β π β β ( 1 / π ) < π β β π β β ( 2nd β ( π β π ) ) < π ) ) |
52 |
18 51
|
mpd |
β’ ( ( π β§ π β β+ ) β β π β β ( 2nd β ( π β π ) ) < π ) |
53 |
52
|
ralrimiva |
β’ ( π β β π β β+ β π β β ( 2nd β ( π β π ) ) < π ) |
54 |
13 7 14 53
|
caubl |
β’ ( π β ( 1st β π ) β ( Cau β π· ) ) |
55 |
1
|
cmetcau |
β’ ( ( π· β ( CMet β π ) β§ ( 1st β π ) β ( Cau β π· ) ) β ( 1st β π ) β dom ( βπ‘ β π½ ) ) |
56 |
2 54 55
|
syl2anc |
β’ ( π β ( 1st β π ) β dom ( βπ‘ β π½ ) ) |
57 |
|
fo1st |
β’ 1st : V βontoβ V |
58 |
|
fofun |
β’ ( 1st : V βontoβ V β Fun 1st ) |
59 |
57 58
|
ax-mp |
β’ Fun 1st |
60 |
|
vex |
β’ π β V |
61 |
|
cofunexg |
β’ ( ( Fun 1st β§ π β V ) β ( 1st β π ) β V ) |
62 |
59 60 61
|
mp2an |
β’ ( 1st β π ) β V |
63 |
62
|
eldm |
β’ ( ( 1st β π ) β dom ( βπ‘ β π½ ) β β π₯ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) |
64 |
56 63
|
sylib |
β’ ( π β β π₯ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) |
65 |
|
1nn |
β’ 1 β β |
66 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ β§ 1 β β ) β π₯ β ( ( ball β π· ) β ( π β 1 ) ) ) |
67 |
65 66
|
mp3an3 |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β π₯ β ( ( ball β π· ) β ( π β 1 ) ) ) |
68 |
8
|
fveq2d |
β’ ( π β ( ( ball β π· ) β ( π β 1 ) ) = ( ( ball β π· ) β β¨ πΆ , π
β© ) ) |
69 |
|
df-ov |
β’ ( πΆ ( ball β π· ) π
) = ( ( ball β π· ) β β¨ πΆ , π
β© ) |
70 |
68 69
|
eqtr4di |
β’ ( π β ( ( ball β π· ) β ( π β 1 ) ) = ( πΆ ( ball β π· ) π
) ) |
71 |
70
|
adantr |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β ( ( ball β π· ) β ( π β 1 ) ) = ( πΆ ( ball β π· ) π
) ) |
72 |
67 71
|
eleqtrd |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β π₯ β ( πΆ ( ball β π· ) π
) ) |
73 |
1
|
mopntop |
β’ ( π· β ( βMet β π ) β π½ β Top ) |
74 |
13 73
|
syl |
β’ ( π β π½ β Top ) |
75 |
74
|
adantr |
β’ ( ( π β§ π β β ) β π½ β Top ) |
76 |
13
|
adantr |
β’ ( ( π β§ π β β ) β π· β ( βMet β π ) ) |
77 |
|
xp1st |
β’ ( ( π β ( π + 1 ) ) β ( π Γ β+ ) β ( 1st β ( π β ( π + 1 ) ) ) β π ) |
78 |
35 77
|
syl |
β’ ( ( π β§ π β β ) β ( 1st β ( π β ( π + 1 ) ) ) β π ) |
79 |
37
|
rpxrd |
β’ ( ( π β§ π β β ) β ( 2nd β ( π β ( π + 1 ) ) ) β β* ) |
80 |
|
blssm |
β’ ( ( π· β ( βMet β π ) β§ ( 1st β ( π β ( π + 1 ) ) ) β π β§ ( 2nd β ( π β ( π + 1 ) ) ) β β* ) β ( ( 1st β ( π β ( π + 1 ) ) ) ( ball β π· ) ( 2nd β ( π β ( π + 1 ) ) ) ) β π ) |
81 |
76 78 79 80
|
syl3anc |
β’ ( ( π β§ π β β ) β ( ( 1st β ( π β ( π + 1 ) ) ) ( ball β π· ) ( 2nd β ( π β ( π + 1 ) ) ) ) β π ) |
82 |
|
df-ov |
β’ ( ( 1st β ( π β ( π + 1 ) ) ) ( ball β π· ) ( 2nd β ( π β ( π + 1 ) ) ) ) = ( ( ball β π· ) β β¨ ( 1st β ( π β ( π + 1 ) ) ) , ( 2nd β ( π β ( π + 1 ) ) ) β© ) |
83 |
|
1st2nd2 |
β’ ( ( π β ( π + 1 ) ) β ( π Γ β+ ) β ( π β ( π + 1 ) ) = β¨ ( 1st β ( π β ( π + 1 ) ) ) , ( 2nd β ( π β ( π + 1 ) ) ) β© ) |
84 |
35 83
|
syl |
β’ ( ( π β§ π β β ) β ( π β ( π + 1 ) ) = β¨ ( 1st β ( π β ( π + 1 ) ) ) , ( 2nd β ( π β ( π + 1 ) ) ) β© ) |
85 |
84
|
fveq2d |
β’ ( ( π β§ π β β ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) = ( ( ball β π· ) β β¨ ( 1st β ( π β ( π + 1 ) ) ) , ( 2nd β ( π β ( π + 1 ) ) ) β© ) ) |
86 |
82 85
|
eqtr4id |
β’ ( ( π β§ π β β ) β ( ( 1st β ( π β ( π + 1 ) ) ) ( ball β π· ) ( 2nd β ( π β ( π + 1 ) ) ) ) = ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) |
87 |
1
|
mopnuni |
β’ ( π· β ( βMet β π ) β π = βͺ π½ ) |
88 |
13 87
|
syl |
β’ ( π β π = βͺ π½ ) |
89 |
88
|
adantr |
β’ ( ( π β§ π β β ) β π = βͺ π½ ) |
90 |
81 86 89
|
3sstr3d |
β’ ( ( π β§ π β β ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) β βͺ π½ ) |
91 |
|
eqid |
β’ βͺ π½ = βͺ π½ |
92 |
91
|
sscls |
β’ ( ( π½ β Top β§ ( ( ball β π· ) β ( π β ( π + 1 ) ) ) β βͺ π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) β ( ( cls β π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) ) |
93 |
75 90 92
|
syl2anc |
β’ ( ( π β§ π β β ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) β ( ( cls β π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) ) |
94 |
32
|
simp3d |
β’ ( ( π β§ π β β ) β ( ( cls β π½ ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) |
95 |
93 94
|
sstrd |
β’ ( ( π β§ π β β ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) |
96 |
95
|
3adant2 |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ β§ π β β ) β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) |
97 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ β§ ( π + 1 ) β β ) β π₯ β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) |
98 |
19 97
|
syl3an3 |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ β§ π β β ) β π₯ β ( ( ball β π· ) β ( π β ( π + 1 ) ) ) ) |
99 |
96 98
|
sseldd |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ β§ π β β ) β π₯ β ( ( ( ball β π· ) β ( π β π ) ) β ( π β π ) ) ) |
100 |
99
|
eldifbd |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ β§ π β β ) β Β¬ π₯ β ( π β π ) ) |
101 |
100
|
3expa |
β’ ( ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β§ π β β ) β Β¬ π₯ β ( π β π ) ) |
102 |
101
|
ralrimiva |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β β π β β Β¬ π₯ β ( π β π ) ) |
103 |
|
eluni2 |
β’ ( π₯ β βͺ ran π β β π¦ β ran π π₯ β π¦ ) |
104 |
4
|
ffnd |
β’ ( π β π Fn β ) |
105 |
|
eleq2 |
β’ ( π¦ = ( π β π ) β ( π₯ β π¦ β π₯ β ( π β π ) ) ) |
106 |
105
|
rexrn |
β’ ( π Fn β β ( β π¦ β ran π π₯ β π¦ β β π β β π₯ β ( π β π ) ) ) |
107 |
104 106
|
syl |
β’ ( π β ( β π¦ β ran π π₯ β π¦ β β π β β π₯ β ( π β π ) ) ) |
108 |
103 107
|
bitrid |
β’ ( π β ( π₯ β βͺ ran π β β π β β π₯ β ( π β π ) ) ) |
109 |
108
|
notbid |
β’ ( π β ( Β¬ π₯ β βͺ ran π β Β¬ β π β β π₯ β ( π β π ) ) ) |
110 |
|
ralnex |
β’ ( β π β β Β¬ π₯ β ( π β π ) β Β¬ β π β β π₯ β ( π β π ) ) |
111 |
109 110
|
bitr4di |
β’ ( π β ( Β¬ π₯ β βͺ ran π β β π β β Β¬ π₯ β ( π β π ) ) ) |
112 |
111
|
biimpar |
β’ ( ( π β§ β π β β Β¬ π₯ β ( π β π ) ) β Β¬ π₯ β βͺ ran π ) |
113 |
102 112
|
syldan |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β Β¬ π₯ β βͺ ran π ) |
114 |
72 113
|
eldifd |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β π₯ β ( ( πΆ ( ball β π· ) π
) β βͺ ran π ) ) |
115 |
114
|
ne0d |
β’ ( ( π β§ ( 1st β π ) ( βπ‘ β π½ ) π₯ ) β ( ( πΆ ( ball β π· ) π
) β βͺ ran π ) β β
) |
116 |
64 115
|
exlimddv |
β’ ( π β ( ( πΆ ( ball β π· ) π
) β βͺ ran π ) β β
) |