Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
bcthlem.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
3 |
|
bcthlem.5 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) |
4 |
|
bcthlem.6 |
⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
5 |
|
bcthlem.7 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
6 |
|
bcthlem.8 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
7 |
|
bcthlem.9 |
⊢ ( 𝜑 → 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
8 |
|
bcthlem.10 |
⊢ ( 𝜑 → ( 𝑔 ‘ 1 ) = 〈 𝐶 , 𝑅 〉 ) |
9 |
|
bcthlem.11 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) |
10 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
12 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
14 |
1 2 3 4 5 6 7 8 9
|
bcthlem2 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
15 |
|
elrp |
⊢ ( 𝑟 ∈ ℝ+ ↔ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ) |
16 |
|
nnrecl |
⊢ ( ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) → ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 ) |
17 |
15 16
|
sylbi |
⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 ) |
19 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
21 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) |
22 |
|
id |
⊢ ( 𝑘 = 𝑚 → 𝑘 = 𝑚 ) |
23 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑚 ) ) |
24 |
22 23
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) |
25 |
21 24
|
eleq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) ) |
26 |
25
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) |
27 |
9 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) |
28 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ∈ ( 𝑋 × ℝ+ ) ) |
29 |
1 2 3
|
bcthlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 ‘ 𝑚 ) ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ↔ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) ) |
30 |
29
|
expr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑚 ) ∈ ( 𝑋 × ℝ+ ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ↔ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) ) ) |
31 |
28 30
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ↔ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) ) |
32 |
27 31
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) |
33 |
32
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ) |
35 |
32
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ) |
36 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ+ ) |
37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ+ ) |
38 |
37
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ ) |
40 |
|
nnrecre |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ ) |
42 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → 𝑟 ∈ ℝ ) |
44 |
|
lttr |
⊢ ( ( ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ ∧ ( 1 / 𝑚 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( 1 / 𝑚 ) < 𝑟 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) |
45 |
39 41 43 44
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( 1 / 𝑚 ) < 𝑟 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) |
46 |
34 45
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ( 1 / 𝑚 ) < 𝑟 → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) |
47 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) |
48 |
47
|
breq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ↔ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) |
49 |
48
|
rspcev |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) |
50 |
20 46 49
|
syl6an |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ( 1 / 𝑚 ) < 𝑟 → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) ) |
51 |
50
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) ) |
52 |
18 51
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) |
53 |
52
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) |
54 |
13 7 14 53
|
caubl |
⊢ ( 𝜑 → ( 1st ∘ 𝑔 ) ∈ ( Cau ‘ 𝐷 ) ) |
55 |
1
|
cmetcau |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 1st ∘ 𝑔 ) ∈ ( Cau ‘ 𝐷 ) ) → ( 1st ∘ 𝑔 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
56 |
2 54 55
|
syl2anc |
⊢ ( 𝜑 → ( 1st ∘ 𝑔 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
57 |
|
fo1st |
⊢ 1st : V –onto→ V |
58 |
|
fofun |
⊢ ( 1st : V –onto→ V → Fun 1st ) |
59 |
57 58
|
ax-mp |
⊢ Fun 1st |
60 |
|
vex |
⊢ 𝑔 ∈ V |
61 |
|
cofunexg |
⊢ ( ( Fun 1st ∧ 𝑔 ∈ V ) → ( 1st ∘ 𝑔 ) ∈ V ) |
62 |
59 60 61
|
mp2an |
⊢ ( 1st ∘ 𝑔 ) ∈ V |
63 |
62
|
eldm |
⊢ ( ( 1st ∘ 𝑔 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ∃ 𝑥 ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
64 |
56 63
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
65 |
|
1nn |
⊢ 1 ∈ ℕ |
66 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 1 ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) ) |
67 |
65 66
|
mp3an3 |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) ) |
68 |
8
|
fveq2d |
⊢ ( 𝜑 → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 𝐶 , 𝑅 〉 ) ) |
69 |
|
df-ov |
⊢ ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) = ( ( ball ‘ 𝐷 ) ‘ 〈 𝐶 , 𝑅 〉 ) |
70 |
68 69
|
eqtr4di |
⊢ ( 𝜑 → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) = ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) = ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) |
72 |
67 71
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) |
73 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
74 |
13 73
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐽 ∈ Top ) |
76 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
77 |
|
xp1st |
⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ 𝑋 ) |
78 |
35 77
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ 𝑋 ) |
79 |
37
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ* ) |
80 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ 𝑋 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ 𝑋 ) |
81 |
76 78 79 80
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ 𝑋 ) |
82 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) |
83 |
|
1st2nd2 |
⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) |
84 |
35 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) |
85 |
84
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) ) |
86 |
82 85
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) = ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) |
87 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
88 |
13 87
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑋 = ∪ 𝐽 ) |
90 |
81 86 89
|
3sstr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ∪ 𝐽 ) |
91 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
92 |
91
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ∪ 𝐽 ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ) |
93 |
75 90 92
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ) |
94 |
32
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
95 |
93 94
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
96 |
95
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
97 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) |
98 |
19 97
|
syl3an3 |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) |
99 |
96 98
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
100 |
99
|
eldifbd |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) |
101 |
100
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑚 ∈ ℕ ) → ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) |
102 |
101
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) |
103 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ran 𝑀 ↔ ∃ 𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ) |
104 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑀 Fn ℕ ) |
105 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑀 ‘ 𝑚 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
106 |
105
|
rexrn |
⊢ ( 𝑀 Fn ℕ → ( ∃ 𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
107 |
104 106
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
108 |
103 107
|
syl5bb |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ ran 𝑀 ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
109 |
108
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ∪ ran 𝑀 ↔ ¬ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
110 |
|
ralnex |
⊢ ( ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ↔ ¬ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) |
111 |
109 110
|
bitr4di |
⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ∪ ran 𝑀 ↔ ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
112 |
111
|
biimpar |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) → ¬ 𝑥 ∈ ∪ ran 𝑀 ) |
113 |
102 112
|
syldan |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ¬ 𝑥 ∈ ∪ ran 𝑀 ) |
114 |
72 113
|
eldifd |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ∖ ∪ ran 𝑀 ) ) |
115 |
114
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ∖ ∪ ran 𝑀 ) ≠ ∅ ) |
116 |
64 115
|
exlimddv |
⊢ ( 𝜑 → ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ∖ ∪ ran 𝑀 ) ≠ ∅ ) |