Metamath Proof Explorer


Theorem bcthlem5

Description: Lemma for bcth . The proof makes essential use of the Axiom of Dependent Choice axdc4uz , which in the form used here accepts a "selection" function F from each element of K to a nonempty subset of K , and the result function g maps g ( n + 1 ) to an element of F ( n , g ( n ) ) . The trick here is thus in the choice of F and K : we let K be the set of all tagged nonempty open sets (tagged here meaning that we have a point and an open set, in an ordered pair), and F ( k , <. x , z >. ) gives the set of all balls of size less than 1 / k , tagged by their centers, whose closures fit within the given open set z and miss M ( k ) .

Since M ( k ) is closed, z \ M ( k ) is open and also nonempty, since z is nonempty and M ( k ) has empty interior. Then there is some ball contained in it, and hence our function F is valid (it never maps to the empty set). Now starting at a point in the interior of U. ran M , DC gives us the function g all whose elements are constrained by F acting on the previous value. (This is all proven in this lemma.) Now g is a sequence of tagged open balls, forming an inclusion chain (see bcthlem2 ) and whose sizes tend to zero, since they are bounded above by 1 / k . Thus, the centers of these balls form a Cauchy sequence, and converge to a point x (see bcthlem4 ). Since the inclusion chain also ensures the closure of each ball is in the previous ball, the point x must be in all these balls (see bcthlem3 ) and hence misses each M ( k ) , contradicting the fact that x is in the interior of U. ran M (which was the starting point). (Contributed by Mario Carneiro, 6-Jan-2014)

Ref Expression
Hypotheses bcth.2 𝐽 = ( MetOpen ‘ 𝐷 )
bcthlem.4 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
bcthlem.5 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } )
bcthlem.6 ( 𝜑𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )
bcthlem5.7 ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ∅ )
Assertion bcthlem5 ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) = ∅ )

Proof

Step Hyp Ref Expression
1 bcth.2 𝐽 = ( MetOpen ‘ 𝐷 )
2 bcthlem.4 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
3 bcthlem.5 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } )
4 bcthlem.6 ( 𝜑𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )
5 bcthlem5.7 ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ∅ )
6 cmetmet ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
7 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
8 2 6 7 3syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
9 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
10 8 9 syl ( 𝜑𝐽 ∈ Top )
11 4 frnd ( 𝜑 → ran 𝑀 ⊆ ( Clsd ‘ 𝐽 ) )
12 eqid 𝐽 = 𝐽
13 12 cldss2 ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝐽
14 11 13 sstrdi ( 𝜑 → ran 𝑀 ⊆ 𝒫 𝐽 )
15 sspwuni ( ran 𝑀 ⊆ 𝒫 𝐽 ran 𝑀 𝐽 )
16 14 15 sylib ( 𝜑 ran 𝑀 𝐽 )
17 12 ntropn ( ( 𝐽 ∈ Top ∧ ran 𝑀 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∈ 𝐽 )
18 10 16 17 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∈ 𝐽 )
19 8 18 jca ( 𝜑 → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∈ 𝐽 ) )
20 1 mopni2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∈ 𝐽𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ) → ∃ 𝑚 ∈ ℝ+ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
21 20 3expa ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∈ 𝐽 ) ∧ 𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ) → ∃ 𝑚 ∈ ℝ+ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
22 19 21 sylan ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ) → ∃ 𝑚 ∈ ℝ+ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
23 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
24 8 23 syl ( 𝜑𝑋 = 𝐽 )
25 12 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
26 10 25 syl ( 𝜑 𝐽𝐽 )
27 24 26 eqeltrd ( 𝜑𝑋𝐽 )
28 reex ℝ ∈ V
29 rpssre + ⊆ ℝ
30 28 29 ssexi + ∈ V
31 xpexg ( ( 𝑋𝐽 ∧ ℝ+ ∈ V ) → ( 𝑋 × ℝ+ ) ∈ V )
32 27 30 31 sylancl ( 𝜑 → ( 𝑋 × ℝ+ ) ∈ V )
33 32 3ad2ant1 ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → ( 𝑋 × ℝ+ ) ∈ V )
34 12 ntrss3 ( ( 𝐽 ∈ Top ∧ ran 𝑀 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ⊆ 𝐽 )
35 10 16 34 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ⊆ 𝐽 )
36 35 24 sseqtrrd ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ⊆ 𝑋 )
37 36 3ad2ant1 ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ⊆ 𝑋 )
38 simp2 ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → 𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
39 37 38 sseldd ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → 𝑛𝑋 )
40 simp3 ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → 𝑚 ∈ ℝ+ )
41 39 40 opelxpd ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → ⟨ 𝑛 , 𝑚 ⟩ ∈ ( 𝑋 × ℝ+ ) )
42 opabssxp { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ )
43 elpw2g ( ( 𝑋 × ℝ+ ) ∈ V → ( { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ 𝒫 ( 𝑋 × ℝ+ ) ↔ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ ) ) )
44 32 43 syl ( 𝜑 → ( { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ 𝒫 ( 𝑋 × ℝ+ ) ↔ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ ) ) )
45 44 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ 𝒫 ( 𝑋 × ℝ+ ) ↔ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ⊆ ( 𝑋 × ℝ+ ) ) )
46 42 45 mpbiri ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ 𝒫 ( 𝑋 × ℝ+ ) )
47 simpl ( ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) → 𝑘 ∈ ℕ )
48 rspa ( ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ∅ ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ∅ )
49 5 47 48 syl2an ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ∅ )
50 ssdif0 ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( 𝑀𝑘 ) ↔ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) = ∅ )
51 1st2nd2 ( 𝑧 ∈ ( 𝑋 × ℝ+ ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
52 51 ad2antll ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
53 52 fveq2d ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) = ( ( ball ‘ 𝐷 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
54 df-ov ( ( 1st𝑧 ) ( ball ‘ 𝐷 ) ( 2nd𝑧 ) ) = ( ( ball ‘ 𝐷 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
55 53 54 eqtr4di ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) = ( ( 1st𝑧 ) ( ball ‘ 𝐷 ) ( 2nd𝑧 ) ) )
56 8 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
57 xp1st ( 𝑧 ∈ ( 𝑋 × ℝ+ ) → ( 1st𝑧 ) ∈ 𝑋 )
58 57 ad2antll ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 1st𝑧 ) ∈ 𝑋 )
59 xp2nd ( 𝑧 ∈ ( 𝑋 × ℝ+ ) → ( 2nd𝑧 ) ∈ ℝ+ )
60 59 ad2antll ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 2nd𝑧 ) ∈ ℝ+ )
61 bln0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st𝑧 ) ∈ 𝑋 ∧ ( 2nd𝑧 ) ∈ ℝ+ ) → ( ( 1st𝑧 ) ( ball ‘ 𝐷 ) ( 2nd𝑧 ) ) ≠ ∅ )
62 56 58 60 61 syl3anc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( 1st𝑧 ) ( ball ‘ 𝐷 ) ( 2nd𝑧 ) ) ≠ ∅ )
63 55 62 eqnetrd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ≠ ∅ )
64 10 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → 𝐽 ∈ Top )
65 ffvelrn ( ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀𝑘 ) ∈ ( Clsd ‘ 𝐽 ) )
66 4 47 65 syl2an ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝑀𝑘 ) ∈ ( Clsd ‘ 𝐽 ) )
67 12 cldss ( ( 𝑀𝑘 ) ∈ ( Clsd ‘ 𝐽 ) → ( 𝑀𝑘 ) ⊆ 𝐽 )
68 66 67 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝑀𝑘 ) ⊆ 𝐽 )
69 60 rpxrd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 2nd𝑧 ) ∈ ℝ* )
70 1 blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st𝑧 ) ∈ 𝑋 ∧ ( 2nd𝑧 ) ∈ ℝ* ) → ( ( 1st𝑧 ) ( ball ‘ 𝐷 ) ( 2nd𝑧 ) ) ∈ 𝐽 )
71 56 58 69 70 syl3anc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( 1st𝑧 ) ( ball ‘ 𝐷 ) ( 2nd𝑧 ) ) ∈ 𝐽 )
72 55 71 eqeltrd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∈ 𝐽 )
73 12 ssntr ( ( ( 𝐽 ∈ Top ∧ ( 𝑀𝑘 ) ⊆ 𝐽 ) ∧ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∈ 𝐽 ∧ ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( 𝑀𝑘 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) )
74 73 expr ( ( ( 𝐽 ∈ Top ∧ ( 𝑀𝑘 ) ⊆ 𝐽 ) ∧ ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∈ 𝐽 ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( 𝑀𝑘 ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) ) )
75 64 68 72 74 syl21anc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( 𝑀𝑘 ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) ) )
76 ssn0 ( ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) ∧ ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ≠ ∅ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) ≠ ∅ )
77 76 expcom ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ≠ ∅ → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) ≠ ∅ ) )
78 63 75 77 sylsyld ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ ( 𝑀𝑘 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) ≠ ∅ ) )
79 50 78 syl5bir ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) ≠ ∅ ) )
80 79 necon2d ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑀𝑘 ) ) = ∅ → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ≠ ∅ ) )
81 49 80 mpd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ≠ ∅ )
82 n0 ( ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) )
83 8 3ad2ant1 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
84 12 difopn ( ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∈ 𝐽 ∧ ( 𝑀𝑘 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ∈ 𝐽 )
85 72 66 84 syl2anc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ∈ 𝐽 )
86 85 3adant3 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ∈ 𝐽 )
87 simp3 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) )
88 simp2l ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → 𝑘 ∈ ℕ )
89 nnrp ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ )
90 89 rpreccld ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ )
91 88 90 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ+ )
92 1 mopni3 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ∈ 𝐽𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ∧ ( 1 / 𝑘 ) ∈ ℝ+ ) → ∃ 𝑛 ∈ ℝ+ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) )
93 83 86 87 91 92 syl31anc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ∃ 𝑛 ∈ ℝ+ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) )
94 simp1 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → 𝜑 )
95 elssuni ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∈ 𝐽 → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ 𝐽 )
96 72 95 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ 𝐽 )
97 24 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → 𝑋 = 𝐽 )
98 96 97 sseqtrrd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ⊆ 𝑋 )
99 98 ssdifssd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ⊆ 𝑋 )
100 99 sseld ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) → 𝑥𝑋 ) )
101 100 3impia ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → 𝑥𝑋 )
102 simp2 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) )
103 rphalfcl ( 𝑛 ∈ ℝ+ → ( 𝑛 / 2 ) ∈ ℝ+ )
104 rphalflt ( 𝑛 ∈ ℝ+ → ( 𝑛 / 2 ) < 𝑛 )
105 breq1 ( 𝑟 = ( 𝑛 / 2 ) → ( 𝑟 < 𝑛 ↔ ( 𝑛 / 2 ) < 𝑛 ) )
106 105 rspcev ( ( ( 𝑛 / 2 ) ∈ ℝ+ ∧ ( 𝑛 / 2 ) < 𝑛 ) → ∃ 𝑟 ∈ ℝ+ 𝑟 < 𝑛 )
107 103 104 106 syl2anc ( 𝑛 ∈ ℝ+ → ∃ 𝑟 ∈ ℝ+ 𝑟 < 𝑛 )
108 107 ad2antlr ( ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ 𝑛 ∈ ℝ+ ) ∧ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) → ∃ 𝑟 ∈ ℝ+ 𝑟 < 𝑛 )
109 df-rex ( ∃ 𝑟 ∈ ℝ+ 𝑟 < 𝑛 ↔ ∃ 𝑟 ( 𝑟 ∈ ℝ+𝑟 < 𝑛 ) )
110 simpr3 ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ+ )
111 110 rpred ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ )
112 simpr1 ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → 𝑛 ∈ ℝ+ )
113 112 rpred ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → 𝑛 ∈ ℝ )
114 simplrl ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → 𝑘 ∈ ℕ )
115 114 nnrecred ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → ( 1 / 𝑘 ) ∈ ℝ )
116 simpr2 ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → 𝑟 < 𝑛 )
117 lttr ( ( 𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) → ( ( 𝑟 < 𝑛𝑛 < ( 1 / 𝑘 ) ) → 𝑟 < ( 1 / 𝑘 ) ) )
118 117 expdimp ( ( ( 𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) ∧ 𝑟 < 𝑛 ) → ( 𝑛 < ( 1 / 𝑘 ) → 𝑟 < ( 1 / 𝑘 ) ) )
119 111 113 115 116 118 syl31anc ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → ( 𝑛 < ( 1 / 𝑘 ) → 𝑟 < ( 1 / 𝑘 ) ) )
120 8 anim1i ( ( 𝜑𝑥𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) )
121 120 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) )
122 rpxr ( 𝑟 ∈ ℝ+𝑟 ∈ ℝ* )
123 rpxr ( 𝑛 ∈ ℝ+𝑛 ∈ ℝ* )
124 id ( 𝑟 < 𝑛𝑟 < 𝑛 )
125 122 123 124 3anim123i ( ( 𝑟 ∈ ℝ+𝑛 ∈ ℝ+𝑟 < 𝑛 ) → ( 𝑟 ∈ ℝ*𝑛 ∈ ℝ*𝑟 < 𝑛 ) )
126 125 3coml ( ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) → ( 𝑟 ∈ ℝ*𝑛 ∈ ℝ*𝑟 < 𝑛 ) )
127 1 blsscls ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ*𝑛 ∈ ℝ*𝑟 < 𝑛 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) )
128 121 126 127 syl2an ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) )
129 sstr2 ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) )
130 128 129 syl ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) )
131 119 130 anim12d ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → ( ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) )
132 simpllr ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → 𝑥𝑋 )
133 132 110 jca ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → ( 𝑥𝑋𝑟 ∈ ℝ+ ) )
134 131 133 jctild ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ ( 𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+ ) ) → ( ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
135 134 3exp2 ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝑛 ∈ ℝ+ → ( 𝑟 < 𝑛 → ( 𝑟 ∈ ℝ+ → ( ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) ) ) ) )
136 135 com35 ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝑛 ∈ ℝ+ → ( ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( 𝑟 ∈ ℝ+ → ( 𝑟 < 𝑛 → ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) ) ) ) )
137 136 imp5d ( ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ 𝑛 ∈ ℝ+ ) ∧ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) → ( ( 𝑟 ∈ ℝ+𝑟 < 𝑛 ) → ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
138 137 eximdv ( ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ 𝑛 ∈ ℝ+ ) ∧ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) → ( ∃ 𝑟 ( 𝑟 ∈ ℝ+𝑟 < 𝑛 ) → ∃ 𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
139 109 138 syl5bi ( ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ 𝑛 ∈ ℝ+ ) ∧ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) → ( ∃ 𝑟 ∈ ℝ+ 𝑟 < 𝑛 → ∃ 𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
140 108 139 mpd ( ( ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) ∧ 𝑛 ∈ ℝ+ ) ∧ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) → ∃ 𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) )
141 140 rexlimdva2 ( ( ( 𝜑𝑥𝑋 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ∃ 𝑛 ∈ ℝ+ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ∃ 𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
142 94 101 102 141 syl21anc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ( ∃ 𝑛 ∈ ℝ+ ( 𝑛 < ( 1 / 𝑘 ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑛 ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ∃ 𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
143 93 142 mpd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) → ∃ 𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) )
144 143 3expia ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) → ∃ 𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
145 144 eximdv ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ∃ 𝑥 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) → ∃ 𝑥𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
146 82 145 syl5bi ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ≠ ∅ → ∃ 𝑥𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) ) )
147 81 146 mpd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → ∃ 𝑥𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) )
148 opabn0 ( { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ≠ ∅ ↔ ∃ 𝑥𝑟 ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) )
149 147 148 sylibr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ≠ ∅ )
150 eldifsn ( { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) ↔ ( { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ 𝒫 ( 𝑋 × ℝ+ ) ∧ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ≠ ∅ ) )
151 46 149 150 sylanbrc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ( 𝑋 × ℝ+ ) ) ) → { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) )
152 151 ralrimivva ( 𝜑 → ∀ 𝑘 ∈ ℕ ∀ 𝑧 ∈ ( 𝑋 × ℝ+ ) { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) )
153 3 fmpo ( ∀ 𝑘 ∈ ℕ ∀ 𝑧 ∈ ( 𝑋 × ℝ+ ) { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀𝑘 ) ) ) ) } ∈ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) ↔ 𝐹 : ( ℕ × ( 𝑋 × ℝ+ ) ) ⟶ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) )
154 152 153 sylib ( 𝜑𝐹 : ( ℕ × ( 𝑋 × ℝ+ ) ) ⟶ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) )
155 154 3ad2ant1 ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → 𝐹 : ( ℕ × ( 𝑋 × ℝ+ ) ) ⟶ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) )
156 1z 1 ∈ ℤ
157 nnuz ℕ = ( ℤ ‘ 1 )
158 156 157 axdc4uz ( ( ( 𝑋 × ℝ+ ) ∈ V ∧ ⟨ 𝑛 , 𝑚 ⟩ ∈ ( 𝑋 × ℝ+ ) ∧ 𝐹 : ( ℕ × ( 𝑋 × ℝ+ ) ) ⟶ ( 𝒫 ( 𝑋 × ℝ+ ) ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) )
159 33 41 155 158 syl3anc ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) )
160 simpl1 ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → 𝜑 )
161 160 2 syl ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) )
162 160 4 syl ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )
163 simpl3 ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → 𝑚 ∈ ℝ+ )
164 39 adantr ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → 𝑛𝑋 )
165 simpr1 ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) )
166 simpr2 ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ )
167 simpr3 ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) )
168 fvoveq1 ( 𝑛 = 𝑘 → ( 𝑔 ‘ ( 𝑛 + 1 ) ) = ( 𝑔 ‘ ( 𝑘 + 1 ) ) )
169 id ( 𝑛 = 𝑘𝑛 = 𝑘 )
170 fveq2 ( 𝑛 = 𝑘 → ( 𝑔𝑛 ) = ( 𝑔𝑘 ) )
171 169 170 oveq12d ( 𝑛 = 𝑘 → ( 𝑛 𝐹 ( 𝑔𝑛 ) ) = ( 𝑘 𝐹 ( 𝑔𝑘 ) ) )
172 168 171 eleq12d ( 𝑛 = 𝑘 → ( ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ↔ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) )
173 172 cbvralvw ( ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) )
174 167 173 sylib ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) )
175 1 161 3 162 163 164 165 166 174 bcthlem4 ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ∧ ( 𝑔 ‘ 1 ) = ⟨ 𝑛 , 𝑚 ⟩ ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑛 𝐹 ( 𝑔𝑛 ) ) ) ) → ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ∖ ran 𝑀 ) ≠ ∅ )
176 159 175 exlimddv ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ∖ ran 𝑀 ) ≠ ∅ )
177 12 ntrss2 ( ( 𝐽 ∈ Top ∧ ran 𝑀 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ⊆ ran 𝑀 )
178 10 16 177 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ⊆ ran 𝑀 )
179 sstr2 ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) → ( ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ⊆ ran 𝑀 → ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ran 𝑀 ) )
180 178 179 syl5com ( 𝜑 → ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) → ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ran 𝑀 ) )
181 ssdif0 ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ran 𝑀 ↔ ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ∖ ran 𝑀 ) = ∅ )
182 180 181 syl6ib ( 𝜑 → ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) → ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ∖ ran 𝑀 ) = ∅ ) )
183 182 necon3ad ( 𝜑 → ( ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ∖ ran 𝑀 ) ≠ ∅ → ¬ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ) )
184 183 3ad2ant1 ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → ( ( ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ∖ ran 𝑀 ) ≠ ∅ → ¬ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ) )
185 176 184 mpd ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ∧ 𝑚 ∈ ℝ+ ) → ¬ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
186 185 3expa ( ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ) ∧ 𝑚 ∈ ℝ+ ) → ¬ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
187 186 nrexdv ( ( 𝜑𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) ) → ¬ ∃ 𝑚 ∈ ℝ+ ( 𝑛 ( ball ‘ 𝐷 ) 𝑚 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
188 22 187 pm2.65da ( 𝜑 → ¬ 𝑛 ∈ ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) )
189 188 eq0rdv ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ran 𝑀 ) = ∅ )