| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzle1 | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  0  ≤  𝐾 ) | 
						
							| 2 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 3 |  | elfzelz | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  𝐾  ∈  ℤ ) | 
						
							| 4 | 3 | zred | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  𝐾  ∈  ℝ ) | 
						
							| 5 |  | lenlt | ⊢ ( ( 0  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( 0  ≤  𝐾  ↔  ¬  𝐾  <  0 ) ) | 
						
							| 6 | 2 4 5 | sylancr | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 0  ≤  𝐾  ↔  ¬  𝐾  <  0 ) ) | 
						
							| 7 | 1 6 | mpbid | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ¬  𝐾  <  0 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ¬  𝐾  <  0 ) | 
						
							| 9 |  | elfzle2 | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  𝐾  ≤  𝑁 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  𝐾  ≤  𝑁 ) | 
						
							| 11 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 12 |  | lenlt | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝐾  ≤  𝑁  ↔  ¬  𝑁  <  𝐾 ) ) | 
						
							| 13 | 4 11 12 | syl2anr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐾  ≤  𝑁  ↔  ¬  𝑁  <  𝐾 ) ) | 
						
							| 14 | 10 13 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ¬  𝑁  <  𝐾 ) | 
						
							| 15 |  | ioran | ⊢ ( ¬  ( 𝐾  <  0  ∨  𝑁  <  𝐾 )  ↔  ( ¬  𝐾  <  0  ∧  ¬  𝑁  <  𝐾 ) ) | 
						
							| 16 | 8 14 15 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ¬  ( 𝐾  <  0  ∨  𝑁  <  𝐾 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ¬  ( 𝐾  <  0  ∨  𝑁  <  𝐾 ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ¬  ( 𝐾  <  0  ∨  𝑁  <  𝐾 ) ) ) | 
						
							| 19 | 18 | con2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  <  0  ∨  𝑁  <  𝐾 )  →  ¬  𝐾  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 20 | 19 | 3impia | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ  ∧  ( 𝐾  <  0  ∨  𝑁  <  𝐾 ) )  →  ¬  𝐾  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 21 |  | bcval3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ  ∧  ¬  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑁 C 𝐾 )  =  0 ) | 
						
							| 22 | 20 21 | syld3an3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ  ∧  ( 𝐾  <  0  ∨  𝑁  <  𝐾 ) )  →  ( 𝑁 C 𝐾 )  =  0 ) |