| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcxmaslem1 | ⊢ ( 𝑚  =  0  →  ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  ( ( ( 𝑁  +  1 )  +  0 ) C 0 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑚  =  0  →  ( 0 ... 𝑚 )  =  ( 0 ... 0 ) ) | 
						
							| 3 | 2 | sumeq1d | ⊢ ( 𝑚  =  0  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  Σ 𝑗  ∈  ( 0 ... 0 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) | 
						
							| 4 | 1 3 | eqeq12d | ⊢ ( 𝑚  =  0  →  ( ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  ↔  ( ( ( 𝑁  +  1 )  +  0 ) C 0 )  =  Σ 𝑗  ∈  ( 0 ... 0 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) ) | 
						
							| 5 |  | bcxmaslem1 | ⊢ ( 𝑚  =  𝑘  →  ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑚  =  𝑘  →  ( 0 ... 𝑚 )  =  ( 0 ... 𝑘 ) ) | 
						
							| 7 | 6 | sumeq1d | ⊢ ( 𝑚  =  𝑘  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) | 
						
							| 8 | 5 7 | eqeq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  ↔  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) ) | 
						
							| 9 |  | bcxmaslem1 | ⊢ ( 𝑚  =  ( 𝑘  +  1 )  →  ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  ( ( ( 𝑁  +  1 )  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑘  +  1 )  →  ( 0 ... 𝑚 )  =  ( 0 ... ( 𝑘  +  1 ) ) ) | 
						
							| 11 | 10 | sumeq1d | ⊢ ( 𝑚  =  ( 𝑘  +  1 )  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  Σ 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑚  =  ( 𝑘  +  1 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  ↔  ( ( ( 𝑁  +  1 )  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) )  =  Σ 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) ) | 
						
							| 13 |  | bcxmaslem1 | ⊢ ( 𝑚  =  𝑀  →  ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  ( ( ( 𝑁  +  1 )  +  𝑀 ) C 𝑀 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑚  =  𝑀  →  ( 0 ... 𝑚 )  =  ( 0 ... 𝑀 ) ) | 
						
							| 15 | 14 | sumeq1d | ⊢ ( 𝑚  =  𝑀  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) | 
						
							| 16 | 13 15 | eqeq12d | ⊢ ( 𝑚  =  𝑀  →  ( ( ( ( 𝑁  +  1 )  +  𝑚 ) C 𝑚 )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  ↔  ( ( ( 𝑁  +  1 )  +  𝑀 ) C 𝑀 )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) ) | 
						
							| 17 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 18 |  | nn0addcl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  ( 𝑁  +  0 )  ∈  ℕ0 ) | 
						
							| 19 |  | bcn0 | ⊢ ( ( 𝑁  +  0 )  ∈  ℕ0  →  ( ( 𝑁  +  0 ) C 0 )  =  1 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  ( ( 𝑁  +  0 ) C 0 )  =  1 ) | 
						
							| 21 | 17 20 | mpan2 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  0 ) C 0 )  =  1 ) | 
						
							| 22 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 23 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 24 | 21 23 | eqeltrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  0 ) C 0 )  ∈  ℕ0 ) | 
						
							| 25 | 24 | nn0cnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  0 ) C 0 )  ∈  ℂ ) | 
						
							| 26 |  | bcxmaslem1 | ⊢ ( 𝑗  =  0  →  ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  ( ( 𝑁  +  0 ) C 0 ) ) | 
						
							| 27 | 26 | fsum1 | ⊢ ( ( 0  ∈  ℤ  ∧  ( ( 𝑁  +  0 ) C 0 )  ∈  ℂ )  →  Σ 𝑗  ∈  ( 0 ... 0 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  ( ( 𝑁  +  0 ) C 0 ) ) | 
						
							| 28 | 22 25 27 | sylancr | ⊢ ( 𝑁  ∈  ℕ0  →  Σ 𝑗  ∈  ( 0 ... 0 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  ( ( 𝑁  +  0 ) C 0 ) ) | 
						
							| 29 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 30 |  | nn0addcl | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  +  0 )  ∈  ℕ0 ) | 
						
							| 31 | 29 17 30 | sylancl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  0 )  ∈  ℕ0 ) | 
						
							| 32 |  | bcn0 | ⊢ ( ( ( 𝑁  +  1 )  +  0 )  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  +  0 ) C 0 )  =  1 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  +  0 ) C 0 )  =  1 ) | 
						
							| 34 | 21 28 33 | 3eqtr4rd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  +  0 ) C 0 )  =  Σ 𝑗  ∈  ( 0 ... 0 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 36 |  | elnn0uz | ⊢ ( 𝑘  ∈  ℕ0  ↔  𝑘  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 37 | 35 36 | sylib | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 38 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 39 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 40 |  | nn0addcl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑁  +  𝑗 )  ∈  ℕ0 ) | 
						
							| 41 | 38 39 40 | syl2an | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) )  →  ( 𝑁  +  𝑗 )  ∈  ℕ0 ) | 
						
							| 42 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 44 |  | bccl | ⊢ ( ( ( 𝑁  +  𝑗 )  ∈  ℕ0  ∧  𝑗  ∈  ℤ )  →  ( ( 𝑁  +  𝑗 ) C 𝑗 )  ∈  ℕ0 ) | 
						
							| 45 | 41 43 44 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) )  →  ( ( 𝑁  +  𝑗 ) C 𝑗 )  ∈  ℕ0 ) | 
						
							| 46 | 45 | nn0cnd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) )  →  ( ( 𝑁  +  𝑗 ) C 𝑗 )  ∈  ℂ ) | 
						
							| 47 |  | bcxmaslem1 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  ( ( 𝑁  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) ) ) | 
						
							| 48 | 37 46 47 | fsump1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  +  ( ( 𝑁  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) ) ) ) | 
						
							| 49 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 51 |  | nn0cn | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℂ ) | 
						
							| 53 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 54 |  | add32r | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑘  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑁  +  ( 𝑘  +  1 ) )  =  ( ( 𝑁  +  1 )  +  𝑘 ) ) | 
						
							| 55 | 50 52 53 54 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁  +  ( 𝑘  +  1 ) )  =  ( ( 𝑁  +  1 )  +  𝑘 ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) )  =  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  +  ( ( 𝑁  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) ) ) | 
						
							| 58 | 48 57 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) )  →  Σ 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) ) ) | 
						
							| 60 |  | oveq1 | ⊢ ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) ) ) | 
						
							| 62 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 63 |  | pncan | ⊢ ( ( 𝑘  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 ) | 
						
							| 64 | 52 62 63 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( ( 𝑘  +  1 )  −  1 ) )  =  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 ) ) | 
						
							| 66 | 65 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( ( 𝑘  +  1 )  −  1 ) ) )  =  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 ) ) ) | 
						
							| 67 |  | nn0addcl | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ0 ) | 
						
							| 68 | 29 67 | sylan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ0 ) | 
						
							| 69 |  | nn0p1nn | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 71 | 70 | nnzd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℤ ) | 
						
							| 72 |  | bcpasc | ⊢ ( ( ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ0  ∧  ( 𝑘  +  1 )  ∈  ℤ )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( ( 𝑘  +  1 )  −  1 ) ) )  =  ( ( ( ( 𝑁  +  1 )  +  𝑘 )  +  1 ) C ( 𝑘  +  1 ) ) ) | 
						
							| 73 | 68 71 72 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( ( 𝑘  +  1 )  −  1 ) ) )  =  ( ( ( ( 𝑁  +  1 )  +  𝑘 )  +  1 ) C ( 𝑘  +  1 ) ) ) | 
						
							| 74 | 66 73 | eqtr3d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 ) )  =  ( ( ( ( 𝑁  +  1 )  +  𝑘 )  +  1 ) C ( 𝑘  +  1 ) ) ) | 
						
							| 75 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 76 |  | nnnn0addcl | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ ) | 
						
							| 77 | 75 76 | sylan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ ) | 
						
							| 78 | 77 | nnnn0d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ0 ) | 
						
							| 79 |  | bccl | ⊢ ( ( ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ0  ∧  ( 𝑘  +  1 )  ∈  ℤ )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  ∈  ℕ0 ) | 
						
							| 80 | 78 71 79 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  ∈  ℕ0 ) | 
						
							| 81 | 80 | nn0cnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 82 |  | nn0z | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℤ ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℤ ) | 
						
							| 84 |  | bccl | ⊢ ( ( ( ( 𝑁  +  1 )  +  𝑘 )  ∈  ℕ0  ∧  𝑘  ∈  ℤ )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  ∈  ℕ0 ) | 
						
							| 85 | 67 83 84 | syl2anc | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  ∈  ℕ0 ) | 
						
							| 86 | 29 85 | sylan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  ∈  ℕ0 ) | 
						
							| 87 | 86 | nn0cnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  ∈  ℂ ) | 
						
							| 88 | 81 87 | addcomd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 ) )  =  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) ) ) | 
						
							| 89 |  | peano2cn | ⊢ ( 𝑁  ∈  ℂ  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 90 | 49 89 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 92 | 91 52 53 | addassd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑘 )  +  1 )  =  ( ( 𝑁  +  1 )  +  ( 𝑘  +  1 ) ) ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 )  +  1 ) C ( 𝑘  +  1 ) )  =  ( ( ( 𝑁  +  1 )  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) ) ) | 
						
							| 94 | 74 88 93 | 3eqtr3d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑁  +  1 )  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) )  →  ( ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  +  ( ( ( 𝑁  +  1 )  +  𝑘 ) C ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑁  +  1 )  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) ) ) | 
						
							| 96 | 59 61 95 | 3eqtr2rd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( ( 𝑁  +  1 )  +  𝑘 ) C 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) )  →  ( ( ( 𝑁  +  1 )  +  ( 𝑘  +  1 ) ) C ( 𝑘  +  1 ) )  =  Σ 𝑗  ∈  ( 0 ... ( 𝑘  +  1 ) ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) | 
						
							| 97 | 4 8 12 16 34 96 | nn0indd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  𝑀 ) C 𝑀 )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑁  +  𝑗 ) C 𝑗 ) ) |