Step |
Hyp |
Ref |
Expression |
1 |
|
bcxmaslem1 |
⊢ ( 𝑚 = 0 → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑚 = 0 → ( 0 ... 𝑚 ) = ( 0 ... 0 ) ) |
3 |
2
|
sumeq1d |
⊢ ( 𝑚 = 0 → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
4 |
1 3
|
eqeq12d |
⊢ ( 𝑚 = 0 → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
5 |
|
bcxmaslem1 |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 0 ... 𝑚 ) = ( 0 ... 𝑘 ) ) |
7 |
6
|
sumeq1d |
⊢ ( 𝑚 = 𝑘 → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
8 |
5 7
|
eqeq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
9 |
|
bcxmaslem1 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 0 ... 𝑚 ) = ( 0 ... ( 𝑘 + 1 ) ) ) |
11 |
10
|
sumeq1d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
12 |
9 11
|
eqeq12d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
13 |
|
bcxmaslem1 |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + 𝑀 ) C 𝑀 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 0 ... 𝑚 ) = ( 0 ... 𝑀 ) ) |
15 |
14
|
sumeq1d |
⊢ ( 𝑚 = 𝑀 → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + 𝑀 ) C 𝑀 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
17 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
18 |
|
nn0addcl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( 𝑁 + 0 ) ∈ ℕ0 ) |
19 |
|
bcn0 |
⊢ ( ( 𝑁 + 0 ) ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) = 1 ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( 𝑁 + 0 ) C 0 ) = 1 ) |
21 |
17 20
|
mpan2 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) = 1 ) |
22 |
|
0z |
⊢ 0 ∈ ℤ |
23 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
24 |
21 23
|
eqeltrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) ∈ ℕ0 ) |
25 |
24
|
nn0cnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) ∈ ℂ ) |
26 |
|
bcxmaslem1 |
⊢ ( 𝑗 = 0 → ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + 0 ) C 0 ) ) |
27 |
26
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ( 𝑁 + 0 ) C 0 ) ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + 0 ) C 0 ) ) |
28 |
22 25 27
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + 0 ) C 0 ) ) |
29 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
30 |
|
nn0addcl |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 0 ) ∈ ℕ0 ) |
31 |
29 17 30
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) + 0 ) ∈ ℕ0 ) |
32 |
|
bcn0 |
⊢ ( ( ( 𝑁 + 1 ) + 0 ) ∈ ℕ0 → ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = 1 ) |
33 |
31 32
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = 1 ) |
34 |
21 28 33
|
3eqtr4rd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
35 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
36 |
|
elnn0uz |
⊢ ( 𝑘 ∈ ℕ0 ↔ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
37 |
35 36
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
38 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
39 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) → 𝑗 ∈ ℕ0 ) |
40 |
|
nn0addcl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑁 + 𝑗 ) ∈ ℕ0 ) |
41 |
38 39 40
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → ( 𝑁 + 𝑗 ) ∈ ℕ0 ) |
42 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) → 𝑗 ∈ ℤ ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → 𝑗 ∈ ℤ ) |
44 |
|
bccl |
⊢ ( ( ( 𝑁 + 𝑗 ) ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) ∈ ℕ0 ) |
45 |
41 43 44
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) ∈ ℕ0 ) |
46 |
45
|
nn0cnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) ∈ ℂ ) |
47 |
|
bcxmaslem1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
48 |
37 46 47
|
fsump1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) ) |
49 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
50 |
49
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
51 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
52 |
51
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
53 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) |
54 |
|
add32r |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑁 + ( 𝑘 + 1 ) ) = ( ( 𝑁 + 1 ) + 𝑘 ) ) |
55 |
50 52 53 54
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 + ( 𝑘 + 1 ) ) = ( ( 𝑁 + 1 ) + 𝑘 ) ) |
56 |
55
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) = ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) |
57 |
56
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
58 |
48 57
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
60 |
|
oveq1 |
⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
62 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
63 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
64 |
52 62 63
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
65 |
64
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) = ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) |
66 |
65
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) ) |
67 |
|
nn0addcl |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ) |
68 |
29 67
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ) |
69 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
70 |
69
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
71 |
70
|
nnzd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
72 |
|
bcpasc |
⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℤ ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) ) |
73 |
68 71 72
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) ) |
74 |
66 73
|
eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) ) |
75 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
76 |
|
nnnn0addcl |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ ) |
77 |
75 76
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ ) |
78 |
77
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ) |
79 |
|
bccl |
⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℤ ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
80 |
78 71 79
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
81 |
80
|
nn0cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ∈ ℂ ) |
82 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
83 |
82
|
adantl |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
84 |
|
bccl |
⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℕ0 ) |
85 |
67 83 84
|
syl2anc |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℕ0 ) |
86 |
29 85
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℕ0 ) |
87 |
86
|
nn0cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℂ ) |
88 |
81 87
|
addcomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
89 |
|
peano2cn |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 + 1 ) ∈ ℂ ) |
90 |
49 89
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℂ ) |
91 |
90
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℂ ) |
92 |
91 52 53
|
addassd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) = ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) ) |
93 |
92
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
94 |
74 88 93
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
96 |
59 61 95
|
3eqtr2rd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
97 |
4 8 12 16 34 96
|
nn0indd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑀 ) C 𝑀 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |