Description: Lemma for bcxmas . (Contributed by Paul Chapman, 18-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcxmaslem1 | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑁 + 𝐴 ) C 𝐴 ) = ( ( 𝑁 + 𝐵 ) C 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑁 + 𝐴 ) = ( 𝑁 + 𝐵 ) ) | |
| 2 | id | ⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑁 + 𝐴 ) C 𝐴 ) = ( ( 𝑁 + 𝐵 ) C 𝐵 ) ) |