Description: Lemma for bcxmas . (Contributed by Paul Chapman, 18-May-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | bcxmaslem1 | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑁 + 𝐴 ) C 𝐴 ) = ( ( 𝑁 + 𝐵 ) C 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑁 + 𝐴 ) = ( 𝑁 + 𝐵 ) ) | |
2 | id | ⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) | |
3 | 1 2 | oveq12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑁 + 𝐴 ) C 𝐴 ) = ( ( 𝑁 + 𝐵 ) C 𝐵 ) ) |