Metamath Proof Explorer


Theorem bcxmaslem1

Description: Lemma for bcxmas . (Contributed by Paul Chapman, 18-May-2007)

Ref Expression
Assertion bcxmaslem1 ( 𝐴 = 𝐵 → ( ( 𝑁 + 𝐴 ) C 𝐴 ) = ( ( 𝑁 + 𝐵 ) C 𝐵 ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝐴 = 𝐵 → ( 𝑁 + 𝐴 ) = ( 𝑁 + 𝐵 ) )
2 id ( 𝐴 = 𝐵𝐴 = 𝐵 )
3 1 2 oveq12d ( 𝐴 = 𝐵 → ( ( 𝑁 + 𝐴 ) C 𝐴 ) = ( ( 𝑁 + 𝐵 ) C 𝐵 ) )