Step |
Hyp |
Ref |
Expression |
1 |
|
df-0s |
⊢ 0s = ( ∅ |s ∅ ) |
2 |
|
snelpwi |
⊢ ( 𝑋 ∈ No → { 𝑋 } ∈ 𝒫 No ) |
3 |
|
nulsslt |
⊢ ( { 𝑋 } ∈ 𝒫 No → ∅ <<s { 𝑋 } ) |
4 |
2 3
|
syl |
⊢ ( 𝑋 ∈ No → ∅ <<s { 𝑋 } ) |
5 |
4
|
adantr |
⊢ ( ( 𝑋 ∈ No ∧ ( bday ‘ 𝑋 ) = ∅ ) → ∅ <<s { 𝑋 } ) |
6 |
|
nulssgt |
⊢ ( { 𝑋 } ∈ 𝒫 No → { 𝑋 } <<s ∅ ) |
7 |
2 6
|
syl |
⊢ ( 𝑋 ∈ No → { 𝑋 } <<s ∅ ) |
8 |
7
|
adantr |
⊢ ( ( 𝑋 ∈ No ∧ ( bday ‘ 𝑋 ) = ∅ ) → { 𝑋 } <<s ∅ ) |
9 |
|
id |
⊢ ( ( bday ‘ 𝑋 ) = ∅ → ( bday ‘ 𝑋 ) = ∅ ) |
10 |
|
0ss |
⊢ ∅ ⊆ ( bday ‘ 𝑥 ) |
11 |
9 10
|
eqsstrdi |
⊢ ( ( bday ‘ 𝑋 ) = ∅ → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑥 ) ) |
12 |
11
|
a1d |
⊢ ( ( bday ‘ 𝑋 ) = ∅ → ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑋 ∈ No ∧ ( bday ‘ 𝑋 ) = ∅ ) → ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
14 |
13
|
ralrimivw |
⊢ ( ( 𝑋 ∈ No ∧ ( bday ‘ 𝑋 ) = ∅ ) → ∀ 𝑥 ∈ No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
15 |
|
0elpw |
⊢ ∅ ∈ 𝒫 No |
16 |
|
nulssgt |
⊢ ( ∅ ∈ 𝒫 No → ∅ <<s ∅ ) |
17 |
15 16
|
ax-mp |
⊢ ∅ <<s ∅ |
18 |
|
eqscut2 |
⊢ ( ( ∅ <<s ∅ ∧ 𝑋 ∈ No ) → ( ( ∅ |s ∅ ) = 𝑋 ↔ ( ∅ <<s { 𝑋 } ∧ { 𝑋 } <<s ∅ ∧ ∀ 𝑥 ∈ No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑥 ) ) ) ) ) |
19 |
17 18
|
mpan |
⊢ ( 𝑋 ∈ No → ( ( ∅ |s ∅ ) = 𝑋 ↔ ( ∅ <<s { 𝑋 } ∧ { 𝑋 } <<s ∅ ∧ ∀ 𝑥 ∈ No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑥 ) ) ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑋 ∈ No ∧ ( bday ‘ 𝑋 ) = ∅ ) → ( ( ∅ |s ∅ ) = 𝑋 ↔ ( ∅ <<s { 𝑋 } ∧ { 𝑋 } <<s ∅ ∧ ∀ 𝑥 ∈ No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑥 ) ) ) ) ) |
21 |
5 8 14 20
|
mpbir3and |
⊢ ( ( 𝑋 ∈ No ∧ ( bday ‘ 𝑋 ) = ∅ ) → ( ∅ |s ∅ ) = 𝑋 ) |
22 |
1 21
|
eqtr2id |
⊢ ( ( 𝑋 ∈ No ∧ ( bday ‘ 𝑋 ) = ∅ ) → 𝑋 = 0s ) |
23 |
22
|
ex |
⊢ ( 𝑋 ∈ No → ( ( bday ‘ 𝑋 ) = ∅ → 𝑋 = 0s ) ) |
24 |
|
fveq2 |
⊢ ( 𝑋 = 0s → ( bday ‘ 𝑋 ) = ( bday ‘ 0s ) ) |
25 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
26 |
24 25
|
eqtrdi |
⊢ ( 𝑋 = 0s → ( bday ‘ 𝑋 ) = ∅ ) |
27 |
23 26
|
impbid1 |
⊢ ( 𝑋 ∈ No → ( ( bday ‘ 𝑋 ) = ∅ ↔ 𝑋 = 0s ) ) |