Step |
Hyp |
Ref |
Expression |
1 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → dom 𝐹 ∈ dom vol ) |
3 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
5 |
4
|
ffnd |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 Fn dom 𝐹 ) |
6 |
|
1cnd |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 1 ∈ ℂ ) |
7 |
|
fnconstg |
⊢ ( 1 ∈ ℂ → ( dom 𝐹 × { 1 } ) Fn dom 𝐹 ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( dom 𝐹 × { 1 } ) Fn dom 𝐹 ) |
9 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
10 |
|
1ex |
⊢ 1 ∈ V |
11 |
10
|
fvconst2 |
⊢ ( 𝑧 ∈ dom 𝐹 → ( ( dom 𝐹 × { 1 } ) ‘ 𝑧 ) = 1 ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( dom 𝐹 × { 1 } ) ‘ 𝑧 ) = 1 ) |
13 |
4
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
14 |
13
|
mulid1d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) · 1 ) = ( 𝐹 ‘ 𝑧 ) ) |
15 |
2 5 8 5 9 12 14
|
offveq |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝐹 ∘f · ( dom 𝐹 × { 1 } ) ) = 𝐹 ) |
16 |
|
simp2 |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( vol ‘ dom 𝐹 ) ∈ ℝ ) |
17 |
|
iblconst |
⊢ ( ( dom 𝐹 ∈ dom vol ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ 1 ∈ ℂ ) → ( dom 𝐹 × { 1 } ) ∈ 𝐿1 ) |
18 |
2 16 6 17
|
syl3anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( dom 𝐹 × { 1 } ) ∈ 𝐿1 ) |
19 |
|
bddmulibl |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( dom 𝐹 × { 1 } ) ∈ 𝐿1 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝐹 ∘f · ( dom 𝐹 × { 1 } ) ) ∈ 𝐿1 ) |
20 |
18 19
|
syld3an2 |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝐹 ∘f · ( dom 𝐹 × { 1 } ) ) ∈ 𝐿1 ) |
21 |
15 20
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) |