Step |
Hyp |
Ref |
Expression |
1 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
2 |
1
|
feqmptd |
⊢ ( 𝐹 ∈ MblFn → 𝐹 = ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 = ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
4 |
|
rzal |
⊢ ( dom 𝐹 = ∅ → ∀ 𝑧 ∈ dom 𝐹 ( 𝐹 ‘ 𝑧 ) = 0 ) |
5 |
|
mpteq12 |
⊢ ( ( dom 𝐹 = ∅ ∧ ∀ 𝑧 ∈ dom 𝐹 ( 𝐹 ‘ 𝑧 ) = 0 ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ∅ ↦ 0 ) ) |
6 |
4 5
|
mpdan |
⊢ ( dom 𝐹 = ∅ → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ∅ ↦ 0 ) ) |
7 |
|
fconstmpt |
⊢ ( ∅ × { 0 } ) = ( 𝑧 ∈ ∅ ↦ 0 ) |
8 |
|
0mbl |
⊢ ∅ ∈ dom vol |
9 |
|
ibl0 |
⊢ ( ∅ ∈ dom vol → ( ∅ × { 0 } ) ∈ 𝐿1 ) |
10 |
8 9
|
ax-mp |
⊢ ( ∅ × { 0 } ) ∈ 𝐿1 |
11 |
7 10
|
eqeltrri |
⊢ ( 𝑧 ∈ ∅ ↦ 0 ) ∈ 𝐿1 |
12 |
6 11
|
eqeltrdi |
⊢ ( dom 𝐹 = ∅ → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
13 |
12
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ dom 𝐹 = ∅ ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
14 |
|
r19.2z |
⊢ ( ( dom 𝐹 ≠ ∅ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
15 |
14
|
anim1i |
⊢ ( ( ( dom 𝐹 ≠ ∅ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑥 ∈ ℝ ) ) |
16 |
15
|
an31s |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ dom 𝐹 ≠ ∅ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑥 ∈ ℝ ) ) |
17 |
1
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
18 |
17
|
ffvelrnda |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
19 |
18
|
absge0d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
|
0red |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → 0 ∈ ℝ ) |
21 |
18
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
22 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → 𝑥 ∈ ℝ ) |
23 |
|
letr |
⊢ ( ( 0 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 0 ≤ 𝑥 ) ) |
24 |
20 21 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 0 ≤ 𝑥 ) ) |
25 |
19 24
|
mpand |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → 0 ≤ 𝑥 ) ) |
26 |
25
|
rexlimdva |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → 0 ≤ 𝑥 ) ) |
27 |
26
|
ex |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) → ( 𝑥 ∈ ℝ → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → 0 ≤ 𝑥 ) ) ) |
28 |
27
|
com23 |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) → ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → ( 𝑥 ∈ ℝ → 0 ≤ 𝑥 ) ) ) |
29 |
28
|
imp32 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ∃ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑥 ∈ ℝ ) ) → 0 ≤ 𝑥 ) |
30 |
16 29
|
sylan2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ dom 𝐹 ≠ ∅ ) ) → 0 ≤ 𝑥 ) |
31 |
30
|
anassrs |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ dom 𝐹 ≠ ∅ ) → 0 ≤ 𝑥 ) |
32 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 0 ≤ 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
33 |
|
id |
⊢ ( 𝐹 ∈ MblFn → 𝐹 ∈ MblFn ) |
34 |
2 33
|
eqeltrrd |
⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ MblFn ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ MblFn ) |
36 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
37 |
36
|
ffvelrnda |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
38 |
37
|
recld |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
39 |
38
|
rexrd |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
40 |
39
|
adantrr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
41 |
|
simprr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
42 |
|
elxrge0 |
⊢ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
43 |
40 41 42
|
sylanbrc |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
44 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
45 |
44
|
a1i |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
46 |
43 45
|
ifclda |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
47 |
46
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
48 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → dom 𝐹 ∈ dom vol ) |
50 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( vol ‘ dom 𝐹 ) ∈ ℝ ) |
51 |
|
elrege0 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
52 |
51
|
biimpri |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
53 |
52
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
54 |
|
itg2const |
⊢ ( ( dom 𝐹 ∈ dom vol ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) = ( 𝑥 · ( vol ‘ dom 𝐹 ) ) ) |
55 |
49 50 53 54
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) = ( 𝑥 · ( vol ‘ dom 𝐹 ) ) ) |
56 |
|
simprll |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
57 |
56 50
|
remulcld |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑥 · ( vol ‘ dom 𝐹 ) ) ∈ ℝ ) |
58 |
55 57
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ) |
59 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
60 |
|
elxrge0 |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) ) |
61 |
60
|
biimpri |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
62 |
59 61
|
sylan |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
63 |
62
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
65 |
|
ifcl |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ∈ ( 0 [,] +∞ ) ) |
66 |
64 44 65
|
sylancl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ∈ ( 0 [,] +∞ ) ) |
67 |
66
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
68 |
|
ifan |
⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) |
69 |
1
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
70 |
69
|
ffvelrnda |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
71 |
70
|
recld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
72 |
70
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
73 |
56
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → 𝑥 ∈ ℝ ) |
74 |
70
|
releabsd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
75 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
76 |
75
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) ) |
77 |
76
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
78 |
77
|
adantll |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
79 |
78
|
adantll |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
80 |
71 72 73 74 79
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
81 |
|
simprlr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 0 ≤ 𝑥 ) |
82 |
81
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → 0 ≤ 𝑥 ) |
83 |
|
breq1 |
⊢ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
84 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
85 |
83 84
|
ifboth |
⊢ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
86 |
80 82 85
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
87 |
|
iftrue |
⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
88 |
87
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
89 |
|
iftrue |
⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) = 𝑥 ) |
90 |
89
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) = 𝑥 ) |
91 |
86 88 90
|
3brtr4d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
92 |
91
|
ex |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
93 |
|
0le0 |
⊢ 0 ≤ 0 |
94 |
93
|
a1i |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → 0 ≤ 0 ) |
95 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) |
96 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) = 0 ) |
97 |
94 95 96
|
3brtr4d |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
98 |
92 97
|
pm2.61d1 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
99 |
68 98
|
eqbrtrid |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
100 |
99
|
ralrimivw |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
101 |
|
reex |
⊢ ℝ ∈ V |
102 |
101
|
a1i |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ℝ ∈ V ) |
103 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
104 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
105 |
102 46 66 103 104
|
ofrfval2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
106 |
100 105
|
mpbird |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
107 |
|
itg2le |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
108 |
47 67 106 107
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
109 |
|
itg2lecl |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
110 |
47 58 108 109
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
111 |
38
|
renegcld |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
112 |
111
|
rexrd |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
113 |
112
|
adantrr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
114 |
|
simprr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
115 |
|
elxrge0 |
⊢ ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
116 |
113 114 115
|
sylanbrc |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
117 |
44
|
a1i |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
118 |
116 117
|
ifclda |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
119 |
118
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
120 |
|
ifan |
⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) |
121 |
71
|
renegcld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
122 |
71
|
recnd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
123 |
122
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) |
124 |
121
|
leabsd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
125 |
122
|
absnegd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
126 |
124 125
|
breqtrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
127 |
|
absrele |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
128 |
70 127
|
syl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
129 |
121 123 72 126 128
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
130 |
121 72 73 129 79
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
131 |
|
breq1 |
⊢ ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
132 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
133 |
131 132
|
ifboth |
⊢ ( ( - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
134 |
130 82 133
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
135 |
|
iftrue |
⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
136 |
135
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
137 |
134 136 90
|
3brtr4d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
138 |
137
|
ex |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
139 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) |
140 |
94 139 96
|
3brtr4d |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
141 |
138 140
|
pm2.61d1 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
142 |
120 141
|
eqbrtrid |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
143 |
142
|
ralrimivw |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
144 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
145 |
102 118 66 144 104
|
ofrfval2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
146 |
143 145
|
mpbird |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
147 |
|
itg2le |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
148 |
119 67 146 147
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
149 |
|
itg2lecl |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
150 |
119 58 148 149
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
151 |
110 150
|
jca |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) |
152 |
37
|
imcld |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
153 |
152
|
rexrd |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
154 |
153
|
adantrr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
155 |
|
simprr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
156 |
|
elxrge0 |
⊢ ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
157 |
154 155 156
|
sylanbrc |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
158 |
44
|
a1i |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
159 |
157 158
|
ifclda |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
160 |
159
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
161 |
|
ifan |
⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) |
162 |
70
|
imcld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
163 |
162
|
recnd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
164 |
163
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) |
165 |
162
|
leabsd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
166 |
|
absimle |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
167 |
70 166
|
syl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
168 |
162 164 72 165 167
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
169 |
162 72 73 168 79
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
170 |
|
breq1 |
⊢ ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
171 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
172 |
170 171
|
ifboth |
⊢ ( ( ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
173 |
169 82 172
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
174 |
|
iftrue |
⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
175 |
174
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
176 |
173 175 90
|
3brtr4d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
177 |
176
|
ex |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
178 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) |
179 |
94 178 96
|
3brtr4d |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
180 |
177 179
|
pm2.61d1 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
181 |
161 180
|
eqbrtrid |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
182 |
181
|
ralrimivw |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
183 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
184 |
102 159 66 183 104
|
ofrfval2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
185 |
182 184
|
mpbird |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
186 |
|
itg2le |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
187 |
160 67 185 186
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
188 |
|
itg2lecl |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
189 |
160 58 187 188
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
190 |
152
|
renegcld |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
191 |
190
|
rexrd |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
192 |
191
|
adantrr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
193 |
|
simprr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
194 |
|
elxrge0 |
⊢ ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ↔ ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
195 |
192 193 194
|
sylanbrc |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
196 |
44
|
a1i |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
197 |
195 196
|
ifclda |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
198 |
197
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
199 |
|
ifan |
⊢ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) = if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) |
200 |
162
|
renegcld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
201 |
200
|
leabsd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
202 |
163
|
absnegd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
203 |
201 202
|
breqtrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
204 |
200 164 72 203 167
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
205 |
200 72 73 204 79
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
206 |
|
breq1 |
⊢ ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ↔ if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
207 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) → ( 0 ≤ 𝑥 ↔ if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) ) |
208 |
206 207
|
ifboth |
⊢ ( ( - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ∧ 0 ≤ 𝑥 ) → if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
209 |
205 82 208
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ 𝑥 ) |
210 |
|
iftrue |
⊢ ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
211 |
210
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) |
212 |
209 211 90
|
3brtr4d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
213 |
212
|
ex |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
214 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) = 0 ) |
215 |
94 214 96
|
3brtr4d |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
216 |
213 215
|
pm2.61d1 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ dom 𝐹 , if ( 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
217 |
199 216
|
eqbrtrid |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
218 |
217
|
ralrimivw |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) |
219 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
220 |
102 197 66 219 104
|
ofrfval2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ≤ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
221 |
218 220
|
mpbird |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) |
222 |
|
itg2le |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
223 |
198 67 221 222
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) |
224 |
|
itg2lecl |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ dom 𝐹 , 𝑥 , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
225 |
198 58 223 224
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
226 |
189 225
|
jca |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) |
227 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
228 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
229 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
230 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) |
231 |
227 228 229 230 70
|
iblcnlem1 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ↔ ( ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑧 ∈ dom 𝐹 ∧ 0 ≤ - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) , - ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
232 |
35 151 226 231
|
mpbir3and |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
233 |
32 232
|
sylan2b |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 0 ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
234 |
233
|
anassrs |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑥 ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
235 |
31 234
|
syldan |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ dom 𝐹 ≠ ∅ ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
236 |
13 235
|
pm2.61dane |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
237 |
236
|
rexlimdvaa |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) ) |
238 |
237
|
3impia |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
239 |
3 238
|
eqeltrd |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) |