Step |
Hyp |
Ref |
Expression |
1 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
3 |
2
|
ffnd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐹 Fn dom 𝐹 ) |
4 |
|
iblmbf |
⊢ ( 𝐺 ∈ 𝐿1 → 𝐺 ∈ MblFn ) |
5 |
4
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐺 ∈ MblFn ) |
6 |
|
mbff |
⊢ ( 𝐺 ∈ MblFn → 𝐺 : dom 𝐺 ⟶ ℂ ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
8 |
7
|
ffnd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐺 Fn dom 𝐺 ) |
9 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → dom 𝐹 ∈ dom vol ) |
11 |
|
mbfdm |
⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) |
12 |
5 11
|
syl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → dom 𝐺 ∈ dom vol ) |
13 |
|
eqid |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) |
14 |
|
eqidd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
15 |
|
eqidd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
16 |
3 8 10 12 13 14 15
|
offval |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝐹 ∘f · 𝐺 ) = ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
17 |
|
ovexd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ∈ V ) |
18 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐹 ∈ MblFn ) |
19 |
18 5
|
mbfmul |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |
20 |
16 19
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ) |
21 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
22 |
21
|
a1i |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → abs : ℂ ⟶ ℝ ) |
23 |
20 17
|
mbfmptcl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
24 |
22 23
|
cofmpt |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( abs ∘ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
25 |
23
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ) |
26 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
27 |
|
ssid |
⊢ ℂ ⊆ ℂ |
28 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℂ –cn→ ℝ ) ⊆ ( ℂ –cn→ ℂ ) ) |
29 |
26 27 28
|
mp2an |
⊢ ( ℂ –cn→ ℝ ) ⊆ ( ℂ –cn→ ℂ ) |
30 |
|
abscncf |
⊢ abs ∈ ( ℂ –cn→ ℝ ) |
31 |
29 30
|
sselii |
⊢ abs ∈ ( ℂ –cn→ ℂ ) |
32 |
31
|
a1i |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → abs ∈ ( ℂ –cn→ ℂ ) ) |
33 |
|
cncombf |
⊢ ( ( ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ∧ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ∧ abs ∈ ( ℂ –cn→ ℂ ) ) → ( abs ∘ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ MblFn ) |
34 |
20 25 32 33
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( abs ∘ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ MblFn ) |
35 |
24 34
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ MblFn ) |
36 |
23
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ ℝ ) |
37 |
36
|
rexrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ ℝ* ) |
38 |
23
|
absge0d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
39 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
40 |
37 38 39
|
sylanbrc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ ( 0 [,] +∞ ) ) |
41 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
42 |
41
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
43 |
40 42
|
ifclda |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
44 |
43
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
45 |
44
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
46 |
|
reex |
⊢ ℝ ∈ V |
47 |
46
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ℝ ∈ V ) |
48 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) ∧ 𝑧 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
50 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑧 ∈ dom 𝐺 ) |
51 |
|
ffvelrn |
⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
52 |
7 50 51
|
syl2an |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
53 |
52
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ) |
54 |
52
|
absge0d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
55 |
|
elrege0 |
⊢ ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
56 |
53 54 55
|
sylanbrc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ( 0 [,) +∞ ) ) |
57 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
58 |
57
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ∈ ( 0 [,) +∞ ) ) |
59 |
56 58
|
ifclda |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
61 |
|
fconstmpt |
⊢ ( ℝ × { 𝑥 } ) = ( 𝑧 ∈ ℝ ↦ 𝑥 ) |
62 |
61
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ℝ × { 𝑥 } ) = ( 𝑧 ∈ ℝ ↦ 𝑥 ) ) |
63 |
|
eqidd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) |
64 |
47 49 60 62 63
|
offval2 |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( ℝ × { 𝑥 } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ ( 𝑥 · if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ) |
65 |
|
ovif2 |
⊢ ( 𝑥 · if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) = if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , ( 𝑥 · 0 ) ) |
66 |
48
|
recnd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
67 |
66
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → 𝑥 ∈ ℂ ) |
68 |
67
|
mul01d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( 𝑥 · 0 ) = 0 ) |
69 |
68
|
ifeq2d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , ( 𝑥 · 0 ) ) = if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) |
70 |
65 69
|
eqtrid |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( 𝑥 · if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) = if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) |
71 |
70
|
mpteq2dv |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( 𝑧 ∈ ℝ ↦ ( 𝑥 · if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) |
72 |
64 71
|
eqtrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( ℝ × { 𝑥 } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) |
73 |
72
|
fveq2d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∫2 ‘ ( ( ℝ × { 𝑥 } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ) |
74 |
59
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
75 |
74
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
76 |
75
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
77 |
|
inss2 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 |
78 |
77
|
a1i |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 ) |
79 |
20 17
|
mbfdm2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
80 |
7
|
ffvelrnda |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
81 |
7
|
feqmptd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐺 = ( 𝑧 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
82 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → 𝐺 ∈ 𝐿1 ) |
83 |
81 82
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
84 |
78 79 80 83
|
iblss |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ 𝐿1 ) |
85 |
52 84
|
iblabs |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ 𝐿1 ) |
86 |
53 54
|
iblpos |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ 𝐿1 ↔ ( ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
87 |
85 86
|
mpbid |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) ) |
88 |
87
|
simprd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
89 |
88
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ∈ ℝ ) |
90 |
|
simplrl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → 𝑥 ∈ ℝ ) |
91 |
|
neq0 |
⊢ ( ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ↔ ∃ 𝑧 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) |
92 |
|
0re |
⊢ 0 ∈ ℝ |
93 |
92
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ∈ ℝ ) |
94 |
|
elinel1 |
⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑧 ∈ dom 𝐹 ) |
95 |
|
ffvelrn |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
96 |
2 94 95
|
syl2an |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
97 |
96
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
98 |
|
simplrl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 𝑥 ∈ ℝ ) |
99 |
96
|
absge0d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
100 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
101 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
102 |
101
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) ) |
103 |
102
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
104 |
100 94 103
|
syl2an |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) |
105 |
93 97 98 99 104
|
letrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ≤ 𝑥 ) |
106 |
105
|
ex |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 0 ≤ 𝑥 ) ) |
107 |
106
|
exlimdv |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∃ 𝑧 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 0 ≤ 𝑥 ) ) |
108 |
91 107
|
syl5bi |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → 0 ≤ 𝑥 ) ) |
109 |
108
|
imp |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → 0 ≤ 𝑥 ) |
110 |
|
elrege0 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
111 |
90 109 110
|
sylanbrc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
112 |
76 89 111
|
itg2mulc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∫2 ‘ ( ( ℝ × { 𝑥 } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ) = ( 𝑥 · ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ) ) |
113 |
73 112
|
eqtr3d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) = ( 𝑥 · ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ) ) |
114 |
90 89
|
remulcld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( 𝑥 · ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) , 0 ) ) ) ) ∈ ℝ ) |
115 |
113 114
|
eqeltrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ) |
116 |
115
|
ex |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ¬ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
117 |
|
noel |
⊢ ¬ 𝑧 ∈ ∅ |
118 |
|
eleq2 |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↔ 𝑧 ∈ ∅ ) ) |
119 |
117 118
|
mtbiri |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) |
120 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) = 0 ) |
121 |
119 120
|
syl |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) = 0 ) |
122 |
121
|
mpteq2dv |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ 0 ) ) |
123 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑧 ∈ ℝ ↦ 0 ) |
124 |
122 123
|
eqtr4di |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) = ( ℝ × { 0 } ) ) |
125 |
124
|
fveq2d |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
126 |
|
itg20 |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |
127 |
126 92
|
eqeltri |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) ∈ ℝ |
128 |
125 127
|
eqeltrdi |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) = ∅ → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ) |
129 |
116 128
|
pm2.61d2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ) |
130 |
98 53
|
remulcld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ ℝ ) |
131 |
130
|
rexrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ ℝ* ) |
132 |
98 53 105 54
|
mulge0d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 0 ≤ ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
133 |
|
elxrge0 |
⊢ ( ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
134 |
131 132 133
|
sylanbrc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ ( 0 [,] +∞ ) ) |
135 |
134 42
|
ifclda |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
136 |
135
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
137 |
136
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
138 |
96 52
|
absmuld |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
139 |
|
abscl |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ℂ → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ) |
140 |
|
absge0 |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ℂ → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
141 |
139 140
|
jca |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ℂ → ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
142 |
52 141
|
syl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
143 |
|
lemul1a |
⊢ ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ≤ ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
144 |
97 98 142 104 143
|
syl31anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ≤ ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
145 |
138 144
|
eqbrtrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ≤ ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
146 |
|
iftrue |
⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
147 |
146
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
148 |
|
iftrue |
⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) = ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
149 |
148
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) = ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
150 |
145 147 149
|
3brtr4d |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ≤ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) |
151 |
|
0le0 |
⊢ 0 ≤ 0 |
152 |
151
|
a1i |
⊢ ( ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 0 ≤ 0 ) |
153 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) = 0 ) |
154 |
152 153 120
|
3brtr4d |
⊢ ( ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ≤ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) |
155 |
154
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) ∧ ¬ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ≤ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) |
156 |
150 155
|
pm2.61dan |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ≤ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) |
157 |
156
|
ralrimivw |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ∀ 𝑧 ∈ ℝ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ≤ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) |
158 |
46
|
a1i |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ℝ ∈ V ) |
159 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) |
160 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) |
161 |
158 44 136 159 160
|
ofrfval2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ≤ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) |
162 |
157 161
|
mpbird |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) |
163 |
|
itg2le |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ) |
164 |
45 137 162 163
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ) |
165 |
|
itg2lecl |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( 𝑥 · ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ) |
166 |
45 129 164 165
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ) |
167 |
36 38
|
iblpos |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
168 |
35 166 167
|
mpbir2and |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ 𝐿1 ) |
169 |
17 20 168
|
iblabsr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ 𝐿1 ) |
170 |
16 169
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) ∧ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ 𝐿1 ) |
171 |
170
|
rexlimdvaa |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 → ( 𝐹 ∘f · 𝐺 ) ∈ 𝐿1 ) ) |
172 |
171
|
3impia |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝐹 ∘f · 𝐺 ) ∈ 𝐿1 ) |