| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 3 | 2 | ffnd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 4 |  | iblmbf | ⊢ ( 𝐺  ∈  𝐿1  →  𝐺  ∈  MblFn ) | 
						
							| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐺  ∈  MblFn ) | 
						
							| 6 |  | mbff | ⊢ ( 𝐺  ∈  MblFn  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 8 | 7 | ffnd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐺  Fn  dom  𝐺 ) | 
						
							| 9 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 11 |  | mbfdm | ⊢ ( 𝐺  ∈  MblFn  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 12 | 5 11 | syl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 13 |  | eqid | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  =  ( dom  𝐹  ∩  dom  𝐺 ) | 
						
							| 14 |  | eqidd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 16 | 3 8 10 12 13 14 15 | offval | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 17 |  | ovexd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐹  ∈  MblFn ) | 
						
							| 19 | 18 5 | mbfmul | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) | 
						
							| 20 | 16 19 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  MblFn ) | 
						
							| 21 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 22 | 21 | a1i | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  abs : ℂ ⟶ ℝ ) | 
						
							| 23 | 20 17 | mbfmptcl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 24 | 22 23 | cofmpt | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( abs  ∘  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) )  =  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) ) | 
						
							| 25 | 23 | fmpttd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℂ ) | 
						
							| 26 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 27 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 28 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ℂ –cn→ ℝ )  ⊆  ( ℂ –cn→ ℂ ) ) | 
						
							| 29 | 26 27 28 | mp2an | ⊢ ( ℂ –cn→ ℝ )  ⊆  ( ℂ –cn→ ℂ ) | 
						
							| 30 |  | abscncf | ⊢ abs  ∈  ( ℂ –cn→ ℝ ) | 
						
							| 31 | 29 30 | sselii | ⊢ abs  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  abs  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 33 |  | cncombf | ⊢ ( ( ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  MblFn  ∧  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℂ  ∧  abs  ∈  ( ℂ –cn→ ℂ ) )  →  ( abs  ∘  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) )  ∈  MblFn ) | 
						
							| 34 | 20 25 32 33 | syl3anc | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( abs  ∘  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) )  ∈  MblFn ) | 
						
							| 35 | 24 34 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) )  ∈  MblFn ) | 
						
							| 36 | 23 | abscld | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 37 | 36 | rexrd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  ℝ* ) | 
						
							| 38 | 23 | absge0d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 39 |  | elxrge0 | ⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  ( 0 [,] +∞ )  ↔  ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  ℝ*  ∧  0  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) ) | 
						
							| 40 | 37 38 39 | sylanbrc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 41 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 42 | 41 | a1i | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 43 | 40 42 | ifclda | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ℝ )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 45 | 44 | fmpttd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 46 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 47 | 46 | a1i | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ℝ  ∈  V ) | 
						
							| 48 |  | simprl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  ∧  𝑧  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 50 |  | elinel2 | ⊢ ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑧  ∈  dom  𝐺 ) | 
						
							| 51 |  | ffvelcdm | ⊢ ( ( 𝐺 : dom  𝐺 ⟶ ℂ  ∧  𝑧  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 52 | 7 50 51 | syl2an | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 53 | 52 | abscld | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 54 | 52 | absge0d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ≤  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 55 |  | elrege0 | ⊢ ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 56 | 53 54 55 | sylanbrc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 57 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 58 | 57 | a1i | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ∈  ( 0 [,) +∞ ) ) | 
						
							| 59 | 56 58 | ifclda | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 60 | 59 | ad2antrr | ⊢ ( ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  ∧  𝑧  ∈  ℝ )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 61 |  | fconstmpt | ⊢ ( ℝ  ×  { 𝑥 } )  =  ( 𝑧  ∈  ℝ  ↦  𝑥 ) | 
						
							| 62 | 61 | a1i | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ℝ  ×  { 𝑥 } )  =  ( 𝑧  ∈  ℝ  ↦  𝑥 ) ) | 
						
							| 63 |  | eqidd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) )  =  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) ) | 
						
							| 64 | 47 49 60 62 63 | offval2 | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ( ℝ  ×  { 𝑥 } )  ∘f   ·  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) )  =  ( 𝑧  ∈  ℝ  ↦  ( 𝑥  ·  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) ) ) | 
						
							| 65 |  | ovif2 | ⊢ ( 𝑥  ·  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) )  =  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  ( 𝑥  ·  0 ) ) | 
						
							| 66 | 48 | recnd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  𝑥  ∈  ℂ ) | 
						
							| 68 | 67 | mul01d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( 𝑥  ·  0 )  =  0 ) | 
						
							| 69 | 68 | ifeq2d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  ( 𝑥  ·  0 ) )  =  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) | 
						
							| 70 | 65 69 | eqtrid | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( 𝑥  ·  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) )  =  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) | 
						
							| 71 | 70 | mpteq2dv | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( 𝑧  ∈  ℝ  ↦  ( 𝑥  ·  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) )  =  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) | 
						
							| 72 | 64 71 | eqtrd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ( ℝ  ×  { 𝑥 } )  ∘f   ·  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) )  =  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝑥 } )  ∘f   ·  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) ) )  =  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) ) | 
						
							| 74 | 59 | adantr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ℝ )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 75 | 74 | fmpttd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 77 |  | inss2 | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺 | 
						
							| 78 | 77 | a1i | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺 ) | 
						
							| 79 | 20 17 | mbfdm2 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol ) | 
						
							| 80 | 7 | ffvelcdmda | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 81 | 7 | feqmptd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐺  =  ( 𝑧  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 82 |  | simplr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  𝐺  ∈  𝐿1 ) | 
						
							| 83 | 81 82 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  𝐿1 ) | 
						
							| 84 | 78 79 80 83 | iblss | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  𝐿1 ) | 
						
							| 85 | 52 84 | iblabs | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  𝐿1 ) | 
						
							| 86 | 53 54 | iblpos | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  𝐿1  ↔  ( ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 87 | 85 86 | mpbid | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 88 | 87 | simprd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 90 |  | simplrl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  𝑥  ∈  ℝ ) | 
						
							| 91 |  | neq0 | ⊢ ( ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  ↔  ∃ 𝑧 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ) | 
						
							| 92 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 93 | 92 | a1i | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ∈  ℝ ) | 
						
							| 94 |  | elinel1 | ⊢ ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 95 |  | ffvelcdm | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  𝑧  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 96 | 2 94 95 | syl2an | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 97 | 96 | abscld | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 98 |  | simplrl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 99 | 96 | absge0d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ≤  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 100 |  | simprr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) | 
						
							| 101 |  | 2fveq3 | ⊢ ( 𝑦  =  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 102 | 101 | breq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥  ↔  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑥 ) ) | 
						
							| 103 | 102 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥  ∧  𝑧  ∈  dom  𝐹 )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑥 ) | 
						
							| 104 | 100 94 103 | syl2an | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑥 ) | 
						
							| 105 | 93 97 98 99 104 | letrd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ≤  𝑥 ) | 
						
							| 106 | 105 | ex | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  0  ≤  𝑥 ) ) | 
						
							| 107 | 106 | exlimdv | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ∃ 𝑧 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  0  ≤  𝑥 ) ) | 
						
							| 108 | 91 107 | biimtrid | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  0  ≤  𝑥 ) ) | 
						
							| 109 | 108 | imp | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  0  ≤  𝑥 ) | 
						
							| 110 |  | elrege0 | ⊢ ( 𝑥  ∈  ( 0 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 111 | 90 109 110 | sylanbrc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  𝑥  ∈  ( 0 [,) +∞ ) ) | 
						
							| 112 | 76 89 111 | itg2mulc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝑥 } )  ∘f   ·  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) ) )  =  ( 𝑥  ·  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) ) ) ) | 
						
							| 113 | 73 112 | eqtr3d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  =  ( 𝑥  ·  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) ) ) ) | 
						
							| 114 | 90 89 | remulcld | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( 𝑥  ·  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 115 | 113 114 | eqeltrd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 116 | 115 | ex | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ¬  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 117 |  | noel | ⊢ ¬  𝑧  ∈  ∅ | 
						
							| 118 |  | eleq2 | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↔  𝑧  ∈  ∅ ) ) | 
						
							| 119 | 117 118 | mtbiri | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ) | 
						
							| 120 |  | iffalse | ⊢ ( ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  =  0 ) | 
						
							| 121 | 119 120 | syl | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  =  0 ) | 
						
							| 122 | 121 | mpteq2dv | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  =  ( 𝑧  ∈  ℝ  ↦  0 ) ) | 
						
							| 123 |  | fconstmpt | ⊢ ( ℝ  ×  { 0 } )  =  ( 𝑧  ∈  ℝ  ↦  0 ) | 
						
							| 124 | 122 123 | eqtr4di | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  =  ( ℝ  ×  { 0 } ) ) | 
						
							| 125 | 124 | fveq2d | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) ) ) | 
						
							| 126 |  | itg20 | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 127 | 126 92 | eqeltri | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  ∈  ℝ | 
						
							| 128 | 125 127 | eqeltrdi | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  =  ∅  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 129 | 116 128 | pm2.61d2 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 130 | 98 53 | remulcld | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 131 | 130 | rexrd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  ℝ* ) | 
						
							| 132 | 98 53 105 54 | mulge0d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  0  ≤  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 133 |  | elxrge0 | ⊢ ( ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  ℝ*  ∧  0  ≤  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ) | 
						
							| 134 | 131 132 133 | sylanbrc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 135 | 134 42 | ifclda | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ℝ )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 137 | 136 | fmpttd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 138 | 96 52 | absmuld | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  =  ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 139 |  | abscl | ⊢ ( ( 𝐺 ‘ 𝑧 )  ∈  ℂ  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 140 |  | absge0 | ⊢ ( ( 𝐺 ‘ 𝑧 )  ∈  ℂ  →  0  ≤  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 141 | 139 140 | jca | ⊢ ( ( 𝐺 ‘ 𝑧 )  ∈  ℂ  →  ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 142 | 52 141 | syl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 143 |  | lemul1a | ⊢ ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑥 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ≤  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 144 | 97 98 142 104 143 | syl31anc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) )  ≤  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 145 | 138 144 | eqbrtrd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ≤  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 146 |  | iftrue | ⊢ ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 147 | 146 | adantl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 148 |  | iftrue | ⊢ ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  =  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 149 | 148 | adantl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  =  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 150 | 145 147 149 | 3brtr4d | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ≤  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) | 
						
							| 151 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 152 | 151 | a1i | ⊢ ( ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  0  ≤  0 ) | 
						
							| 153 |  | iffalse | ⊢ ( ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  =  0 ) | 
						
							| 154 | 152 153 120 | 3brtr4d | ⊢ ( ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ≤  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) | 
						
							| 155 | 154 | adantl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  ∧  ¬  𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ≤  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) | 
						
							| 156 | 150 155 | pm2.61dan | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ≤  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) | 
						
							| 157 | 156 | ralrimivw | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ∀ 𝑧  ∈  ℝ if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ≤  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) | 
						
							| 158 | 46 | a1i | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ℝ  ∈  V ) | 
						
							| 159 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  =  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) | 
						
							| 160 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  =  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) | 
						
							| 161 | 158 44 136 159 160 | ofrfval2 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  ∘r   ≤  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  ↔  ∀ 𝑧  ∈  ℝ if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 )  ≤  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) | 
						
							| 162 | 157 161 | mpbird | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  ∘r   ≤  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) | 
						
							| 163 |  | itg2le | ⊢ ( ( ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) )  ∘r   ≤  ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) ) | 
						
							| 164 | 45 137 162 163 | syl3anc | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) ) | 
						
							| 165 |  | itg2lecl | ⊢ ( ( ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( 𝑥  ·  ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) ) )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 166 | 45 129 164 165 | syl3anc | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 167 | 36 38 | iblpos | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) )  ∈  𝐿1  ↔  ( ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑧  ∈  ℝ  ↦  if ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 ) ,  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 168 | 35 166 167 | mpbir2and | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) )  ∈  𝐿1 ) | 
						
							| 169 | 17 20 168 | iblabsr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝑧  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑧 )  ·  ( 𝐺 ‘ 𝑧 ) ) )  ∈  𝐿1 ) | 
						
							| 170 | 16 169 | eqeltrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  ∧  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝐿1 ) | 
						
							| 171 | 170 | rexlimdvaa | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1 )  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝐿1 ) ) | 
						
							| 172 | 171 | 3impia | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐺  ∈  𝐿1  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝐿1 ) |