Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
1
|
nmocl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
3 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
4 |
2 3
|
jca |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ) |
5 |
|
xrrege0 |
⊢ ( ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ ( 𝑁 ‘ 𝐹 ) ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
6 |
5
|
an4s |
⊢ ( ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ∧ ( 𝐴 ∈ ℝ ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
7 |
4 6
|
sylan |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝐴 ∈ ℝ ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
8 |
1
|
isnghm2 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝐴 ∈ ℝ ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
10 |
7 9
|
mpbird |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝐴 ∈ ℝ ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |