Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
⊢ 𝑆 ∈ BndLinOp |
2 |
|
nmoptri.2 |
⊢ 𝑇 ∈ BndLinOp |
3 |
|
bdopln |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp ) |
4 |
1 3
|
ax-mp |
⊢ 𝑆 ∈ LinOp |
5 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
6 |
2 5
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
7 |
4 6
|
lnopcoi |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ LinOp |
8 |
4
|
lnopfi |
⊢ 𝑆 : ℋ ⟶ ℋ |
9 |
6
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
10 |
8 9
|
hocofi |
⊢ ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ |
11 |
|
nmopxr |
⊢ ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ → ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ ℝ* ) |
12 |
10 11
|
ax-mp |
⊢ ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ ℝ* |
13 |
|
nmopre |
⊢ ( 𝑆 ∈ BndLinOp → ( normop ‘ 𝑆 ) ∈ ℝ ) |
14 |
1 13
|
ax-mp |
⊢ ( normop ‘ 𝑆 ) ∈ ℝ |
15 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
16 |
2 15
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
17 |
14 16
|
remulcli |
⊢ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ |
18 |
|
nmopgtmnf |
⊢ ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ → -∞ < ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ) |
19 |
10 18
|
ax-mp |
⊢ -∞ < ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) |
20 |
1 2
|
nmopcoi |
⊢ ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) |
21 |
|
xrre |
⊢ ( ( ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ ℝ* ∧ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) ∧ ( -∞ < ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ∧ ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) → ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ ℝ ) |
22 |
12 17 19 20 21
|
mp4an |
⊢ ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ ℝ |
23 |
|
elbdop2 |
⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp ↔ ( ( 𝑆 ∘ 𝑇 ) ∈ LinOp ∧ ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ ℝ ) ) |
24 |
7 22 23
|
mpbir2an |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp |