| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nmoptri.1 | 
							⊢ 𝑆  ∈  BndLinOp  | 
						
						
							| 2 | 
							
								
							 | 
							nmoptri.2 | 
							⊢ 𝑇  ∈  BndLinOp  | 
						
						
							| 3 | 
							
								
							 | 
							bdopln | 
							⊢ ( 𝑆  ∈  BndLinOp  →  𝑆  ∈  LinOp )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ax-mp | 
							⊢ 𝑆  ∈  LinOp  | 
						
						
							| 5 | 
							
								
							 | 
							bdopln | 
							⊢ ( 𝑇  ∈  BndLinOp  →  𝑇  ∈  LinOp )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							ax-mp | 
							⊢ 𝑇  ∈  LinOp  | 
						
						
							| 7 | 
							
								4 6
							 | 
							lnopcoi | 
							⊢ ( 𝑆  ∘  𝑇 )  ∈  LinOp  | 
						
						
							| 8 | 
							
								4
							 | 
							lnopfi | 
							⊢ 𝑆 :  ℋ ⟶  ℋ  | 
						
						
							| 9 | 
							
								6
							 | 
							lnopfi | 
							⊢ 𝑇 :  ℋ ⟶  ℋ  | 
						
						
							| 10 | 
							
								8 9
							 | 
							hocofi | 
							⊢ ( 𝑆  ∘  𝑇 ) :  ℋ ⟶  ℋ  | 
						
						
							| 11 | 
							
								
							 | 
							nmopxr | 
							⊢ ( ( 𝑆  ∘  𝑇 ) :  ℋ ⟶  ℋ  →  ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ∈  ℝ* )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							ax-mp | 
							⊢ ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ∈  ℝ*  | 
						
						
							| 13 | 
							
								
							 | 
							nmopre | 
							⊢ ( 𝑆  ∈  BndLinOp  →  ( normop ‘ 𝑆 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							ax-mp | 
							⊢ ( normop ‘ 𝑆 )  ∈  ℝ  | 
						
						
							| 15 | 
							
								
							 | 
							nmopre | 
							⊢ ( 𝑇  ∈  BndLinOp  →  ( normop ‘ 𝑇 )  ∈  ℝ )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							ax-mp | 
							⊢ ( normop ‘ 𝑇 )  ∈  ℝ  | 
						
						
							| 17 | 
							
								14 16
							 | 
							remulcli | 
							⊢ ( ( normop ‘ 𝑆 )  ·  ( normop ‘ 𝑇 ) )  ∈  ℝ  | 
						
						
							| 18 | 
							
								
							 | 
							nmopgtmnf | 
							⊢ ( ( 𝑆  ∘  𝑇 ) :  ℋ ⟶  ℋ  →  -∞  <  ( normop ‘ ( 𝑆  ∘  𝑇 ) ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							ax-mp | 
							⊢ -∞  <  ( normop ‘ ( 𝑆  ∘  𝑇 ) )  | 
						
						
							| 20 | 
							
								1 2
							 | 
							nmopcoi | 
							⊢ ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ≤  ( ( normop ‘ 𝑆 )  ·  ( normop ‘ 𝑇 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							xrre | 
							⊢ ( ( ( ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ∈  ℝ*  ∧  ( ( normop ‘ 𝑆 )  ·  ( normop ‘ 𝑇 ) )  ∈  ℝ )  ∧  ( -∞  <  ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ∧  ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ≤  ( ( normop ‘ 𝑆 )  ·  ( normop ‘ 𝑇 ) ) ) )  →  ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ∈  ℝ )  | 
						
						
							| 22 | 
							
								12 17 19 20 21
							 | 
							mp4an | 
							⊢ ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ∈  ℝ  | 
						
						
							| 23 | 
							
								
							 | 
							elbdop2 | 
							⊢ ( ( 𝑆  ∘  𝑇 )  ∈  BndLinOp  ↔  ( ( 𝑆  ∘  𝑇 )  ∈  LinOp  ∧  ( normop ‘ ( 𝑆  ∘  𝑇 ) )  ∈  ℝ ) )  | 
						
						
							| 24 | 
							
								7 22 23
							 | 
							mpbir2an | 
							⊢ ( 𝑆  ∘  𝑇 )  ∈  BndLinOp  |