Metamath Proof Explorer


Theorem bdopf

Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion bdopf ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ )

Proof

Step Hyp Ref Expression
1 bdopln ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp )
2 lnopf ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )
3 1 2 syl ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ )