Metamath Proof Explorer


Theorem bdophdi

Description: The difference between two bounded linear operators is bounded. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion bdophdi ( 𝑆op 𝑇 ) ∈ BndLinOp

Proof

Step Hyp Ref Expression
1 nmoptri.1 𝑆 ∈ BndLinOp
2 nmoptri.2 𝑇 ∈ BndLinOp
3 bdopf ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ )
4 1 3 ax-mp 𝑆 : ℋ ⟶ ℋ
5 bdopf ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ )
6 2 5 ax-mp 𝑇 : ℋ ⟶ ℋ
7 4 6 honegsubi ( 𝑆 +op ( - 1 ·op 𝑇 ) ) = ( 𝑆op 𝑇 )
8 neg1cn - 1 ∈ ℂ
9 2 bdophmi ( - 1 ∈ ℂ → ( - 1 ·op 𝑇 ) ∈ BndLinOp )
10 8 9 ax-mp ( - 1 ·op 𝑇 ) ∈ BndLinOp
11 1 10 bdophsi ( 𝑆 +op ( - 1 ·op 𝑇 ) ) ∈ BndLinOp
12 7 11 eqeltrri ( 𝑆op 𝑇 ) ∈ BndLinOp