| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmophm.1 |
⊢ 𝑇 ∈ BndLinOp |
| 2 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
| 3 |
1 2
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
| 4 |
3
|
lnopmi |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ LinOp ) |
| 5 |
1
|
nmophmi |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 6 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 8 |
1 7
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 9 |
|
remulcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 10 |
6 8 9
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 11 |
5 10
|
eqeltrd |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 12 |
|
elbdop2 |
⊢ ( ( 𝐴 ·op 𝑇 ) ∈ BndLinOp ↔ ( ( 𝐴 ·op 𝑇 ) ∈ LinOp ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) ) |
| 13 |
4 11 12
|
sylanbrc |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ BndLinOp ) |