| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 0 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑗 = 0 → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · 0 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 4 |
2 3
|
breq12d |
⊢ ( 𝑗 = 0 → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑘 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · 𝑘 ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) |
| 9 |
7 8
|
breq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 · 𝑗 ) = ( 𝐴 · ( 𝑘 + 1 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
| 14 |
12 13
|
breq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑁 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · 𝑁 ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) |
| 19 |
17 18
|
breq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 21 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 22 |
|
mul01 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) = ( 1 + 0 ) ) |
| 24 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 25 |
23 24
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) = 1 ) |
| 26 |
|
1le1 |
⊢ 1 ≤ 1 |
| 27 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 28 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝐴 ) ∈ ℂ ) |
| 29 |
27 28
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( 1 + 𝐴 ) ∈ ℂ ) |
| 30 |
|
exp0 |
⊢ ( ( 1 + 𝐴 ) ∈ ℂ → ( ( 1 + 𝐴 ) ↑ 0 ) = 1 ) |
| 31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) ↑ 0 ) = 1 ) |
| 32 |
26 31
|
breqtrrid |
⊢ ( 𝐴 ∈ ℂ → 1 ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 33 |
25 32
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 34 |
21 33
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 36 |
|
1re |
⊢ 1 ∈ ℝ |
| 37 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 38 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 · 𝑘 ) ∈ ℝ ) |
| 39 |
37 38
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 · 𝑘 ) ∈ ℝ ) |
| 40 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐴 · 𝑘 ) ∈ ℝ ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ) |
| 41 |
36 39 40
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ) |
| 42 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 43 |
|
readdcl |
⊢ ( ( ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ∈ ℝ ) |
| 44 |
41 42 43
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ∈ ℝ ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ∈ ℝ ) |
| 46 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 + 𝐴 ) ∈ ℝ ) |
| 47 |
36 46
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℝ ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 1 + 𝐴 ) ∈ ℝ ) |
| 49 |
41 48
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 51 |
|
reexpcl |
⊢ ( ( ( 1 + 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 52 |
47 51
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 53 |
52 48
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 55 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 56 |
55
|
anidms |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 57 |
|
msqge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) ) |
| 58 |
56 57
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐴 ) ) ) |
| 59 |
|
nn0ge0 |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) |
| 60 |
37 59
|
jca |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ) |
| 61 |
|
mulge0 |
⊢ ( ( ( ( 𝐴 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐴 ) ) ∧ ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ) → 0 ≤ ( ( 𝐴 · 𝐴 ) · 𝑘 ) ) |
| 62 |
58 60 61
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( ( 𝐴 · 𝐴 ) · 𝑘 ) ) |
| 63 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 64 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 66 |
63 63 65
|
mul32d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝐴 ) · 𝑘 ) = ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) |
| 67 |
62 66
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) |
| 68 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 69 |
38 68
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝐴 · 𝑘 ) · 𝐴 ) ∈ ℝ ) |
| 70 |
37 69
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝑘 ) · 𝐴 ) ∈ ℝ ) |
| 71 |
44 70
|
addge01d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 0 ≤ ( ( 𝐴 · 𝑘 ) · 𝐴 ) ↔ ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) |
| 72 |
67 71
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) |
| 73 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
| 74 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 · 𝑘 ) ∈ ℂ ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℂ ) |
| 75 |
27 73 74
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℂ ) |
| 76 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 77 |
73 76
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝐴 · 𝑘 ) · 𝐴 ) ∈ ℂ ) |
| 78 |
75 76 77
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + ( 𝐴 + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) |
| 79 |
|
muladd11 |
⊢ ( ( ( 𝐴 · 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + ( 𝐴 + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) |
| 80 |
73 76 79
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + ( 𝐴 + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) |
| 81 |
78 80
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 82 |
21 64 81
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 83 |
72 82
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 85 |
41
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ) |
| 86 |
52
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 87 |
48
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + 𝐴 ) ∈ ℝ ) |
| 88 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 89 |
|
leadd2 |
⊢ ( ( - 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 ≤ 𝐴 ↔ ( 1 + - 1 ) ≤ ( 1 + 𝐴 ) ) ) |
| 90 |
88 36 89
|
mp3an13 |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 ↔ ( 1 + - 1 ) ≤ ( 1 + 𝐴 ) ) ) |
| 91 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
| 92 |
91
|
breq1i |
⊢ ( ( 1 + - 1 ) ≤ ( 1 + 𝐴 ) ↔ 0 ≤ ( 1 + 𝐴 ) ) |
| 93 |
90 92
|
bitrdi |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 ↔ 0 ≤ ( 1 + 𝐴 ) ) ) |
| 94 |
93
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → 0 ≤ ( 1 + 𝐴 ) ) |
| 95 |
94
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → 0 ≤ ( 1 + 𝐴 ) ) |
| 96 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) |
| 97 |
85 86 87 95 96
|
lemul1ad |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ≤ ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 98 |
45 50 54 84 97
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 99 |
|
adddi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) |
| 100 |
27 99
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) |
| 101 |
|
mulrid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 103 |
102
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
| 104 |
100 103
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
| 105 |
104
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( 1 + ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) |
| 106 |
|
addass |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 · 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) = ( 1 + ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) |
| 107 |
27 73 76 106
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) = ( 1 + ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) |
| 108 |
105 107
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ) |
| 109 |
21 64 108
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ) |
| 111 |
27 21 28
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℂ ) |
| 112 |
|
expp1 |
⊢ ( ( ( 1 + 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 113 |
111 112
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 115 |
98 110 114
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
| 116 |
115
|
exp43 |
⊢ ( 𝐴 ∈ ℝ → ( 𝑘 ∈ ℕ0 → ( - 1 ≤ 𝐴 → ( ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 117 |
116
|
com12 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 → ( ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 118 |
117
|
impd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 119 |
118
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 120 |
5 10 15 20 35 119
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) |
| 121 |
120
|
expd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 122 |
121
|
3imp21 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) |