| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 3 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 5 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
| 6 |
|
reexpcl |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
| 7 |
5 6
|
sylan |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
| 8 |
2
|
ltp1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 9 |
|
uz2m1nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 − 1 ) ∈ ℕ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 − 1 ) ∈ ℕ ) |
| 11 |
10
|
nnred |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 − 1 ) ∈ ℝ ) |
| 12 |
11 2
|
remulcld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑃 − 1 ) · 𝑁 ) ∈ ℝ ) |
| 13 |
|
peano2re |
⊢ ( ( ( 𝑃 − 1 ) · 𝑁 ) ∈ ℝ → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ∈ ℝ ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ∈ ℝ ) |
| 15 |
|
1red |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 16 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
| 18 |
10
|
nnge1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ ( 𝑃 − 1 ) ) |
| 19 |
2 11 17 18
|
lemulge12d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( ( 𝑃 − 1 ) · 𝑁 ) ) |
| 20 |
2 12 15 19
|
leadd1dd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≤ ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ) |
| 21 |
5
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 22 |
|
simpr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 23 |
|
eluzge2nn0 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ0 ) |
| 24 |
|
nn0ge0 |
⊢ ( 𝑃 ∈ ℕ0 → 0 ≤ 𝑃 ) |
| 25 |
23 24
|
syl |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑃 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑃 ) |
| 27 |
|
bernneq2 |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| 28 |
21 22 26 27
|
syl3anc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| 29 |
4 14 7 20 28
|
letrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| 30 |
2 4 7 8 29
|
ltletrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 < ( 𝑃 ↑ 𝑁 ) ) |