Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
2 |
1
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
3 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
4 |
2 3
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℝ ) |
5 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
6 |
|
reexpcl |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
8 |
2
|
ltp1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 < ( 𝑁 + 1 ) ) |
9 |
|
uz2m1nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 − 1 ) ∈ ℕ ) |
10 |
9
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 − 1 ) ∈ ℕ ) |
11 |
10
|
nnred |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 − 1 ) ∈ ℝ ) |
12 |
11 2
|
remulcld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑃 − 1 ) · 𝑁 ) ∈ ℝ ) |
13 |
|
peano2re |
⊢ ( ( ( 𝑃 − 1 ) · 𝑁 ) ∈ ℝ → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ∈ ℝ ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ∈ ℝ ) |
15 |
|
1red |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℝ ) |
16 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
17 |
16
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
18 |
10
|
nnge1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ ( 𝑃 − 1 ) ) |
19 |
2 11 17 18
|
lemulge12d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( ( 𝑃 − 1 ) · 𝑁 ) ) |
20 |
2 12 15 19
|
leadd1dd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≤ ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ) |
21 |
5
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
22 |
|
simpr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
23 |
|
eluzge2nn0 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ0 ) |
24 |
|
nn0ge0 |
⊢ ( 𝑃 ∈ ℕ0 → 0 ≤ 𝑃 ) |
25 |
23 24
|
syl |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑃 ) |
26 |
25
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑃 ) |
27 |
|
bernneq2 |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
28 |
21 22 26 27
|
syl3anc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
29 |
4 14 7 20 28
|
letrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
30 |
2 4 7 8 29
|
ltletrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 < ( 𝑃 ↑ 𝑁 ) ) |