Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑡 → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
2 |
1
|
2rexbidv |
⊢ ( 𝑧 = 𝑡 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑢 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑥 = 𝑢 → ( 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 𝑣 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑦 = 𝑣 → ( 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
9 |
5 8
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
10 |
2 9
|
bitrdi |
⊢ ( 𝑧 = 𝑡 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
11 |
10
|
cbvrabv |
⊢ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } = { 𝑡 ∈ ℕ ∣ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) } |
12 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐴 ∈ ℤ ) |
13 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐵 ∈ ℤ ) |
14 |
|
eqid |
⊢ inf ( { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } , ℝ , < ) = inf ( { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } , ℝ , < ) |
15 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
16 |
11 12 13 14 15
|
bezoutlem4 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } ) |
17 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝐴 gcd 𝐵 ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
18 |
17
|
2rexbidv |
⊢ ( 𝑧 = ( 𝐴 gcd 𝐵 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
19 |
18
|
elrab |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } ↔ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
20 |
19
|
simprbi |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
21 |
16 20
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
22 |
21
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
23 |
|
0z |
⊢ 0 ∈ ℤ |
24 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
25 |
|
0cn |
⊢ 0 ∈ ℂ |
26 |
25
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
27 |
26 26
|
oveq12i |
⊢ ( ( 0 · 0 ) + ( 0 · 0 ) ) = ( 0 + 0 ) |
28 |
|
gcd0val |
⊢ ( 0 gcd 0 ) = 0 |
29 |
24 27 28
|
3eqtr4ri |
⊢ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) |
30 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 0 · 𝑥 ) = ( 0 · 0 ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) = ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ↔ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) ) ) |
33 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 0 · 𝑦 ) = ( 0 · 0 ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑦 = 0 → ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑦 = 0 → ( ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) ↔ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) ) ) |
36 |
32 35
|
rspc2ev |
⊢ ( ( 0 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
37 |
23 23 29 36
|
mp3an |
⊢ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) |
38 |
|
oveq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 gcd 𝐵 ) = ( 0 gcd 0 ) ) |
39 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝑥 ) = ( 0 · 𝑥 ) ) |
40 |
|
oveq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 · 𝑦 ) = ( 0 · 𝑦 ) ) |
41 |
39 40
|
oveqan12d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
42 |
38 41
|
eqeq12d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) ) |
43 |
42
|
2rexbidv |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) ) |
44 |
37 43
|
mpbiri |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
45 |
22 44
|
pm2.61d2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |