Step |
Hyp |
Ref |
Expression |
1 |
|
bezout.1 |
⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } |
2 |
|
bezout.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
3 |
|
bezout.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
4 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( abs ‘ 𝑧 ) = ( abs ‘ 𝐴 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 · 𝑥 ) = ( 𝐴 · 𝑥 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑧 = 𝐴 → ( ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) ) |
8 |
|
zre |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) |
9 |
|
1z |
⊢ 1 ∈ ℤ |
10 |
|
ax-1rid |
⊢ ( 𝑧 ∈ ℝ → ( 𝑧 · 1 ) = 𝑧 ) |
11 |
10
|
eqcomd |
⊢ ( 𝑧 ∈ ℝ → 𝑧 = ( 𝑧 · 1 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝑧 · 𝑥 ) = ( 𝑧 · 1 ) ) |
13 |
12
|
rspceeqv |
⊢ ( ( 1 ∈ ℤ ∧ 𝑧 = ( 𝑧 · 1 ) ) → ∃ 𝑥 ∈ ℤ 𝑧 = ( 𝑧 · 𝑥 ) ) |
14 |
9 11 13
|
sylancr |
⊢ ( 𝑧 ∈ ℝ → ∃ 𝑥 ∈ ℤ 𝑧 = ( 𝑧 · 𝑥 ) ) |
15 |
|
eqeq1 |
⊢ ( ( abs ‘ 𝑧 ) = 𝑧 → ( ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ 𝑧 = ( 𝑧 · 𝑥 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( ( abs ‘ 𝑧 ) = 𝑧 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 𝑧 = ( 𝑧 · 𝑥 ) ) ) |
17 |
14 16
|
syl5ibrcom |
⊢ ( 𝑧 ∈ ℝ → ( ( abs ‘ 𝑧 ) = 𝑧 → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) ) |
18 |
|
neg1z |
⊢ - 1 ∈ ℤ |
19 |
|
recn |
⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) |
20 |
19
|
mulm1d |
⊢ ( 𝑧 ∈ ℝ → ( - 1 · 𝑧 ) = - 𝑧 ) |
21 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
22 |
|
mulcom |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( - 1 · 𝑧 ) = ( 𝑧 · - 1 ) ) |
23 |
21 19 22
|
sylancr |
⊢ ( 𝑧 ∈ ℝ → ( - 1 · 𝑧 ) = ( 𝑧 · - 1 ) ) |
24 |
20 23
|
eqtr3d |
⊢ ( 𝑧 ∈ ℝ → - 𝑧 = ( 𝑧 · - 1 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑥 = - 1 → ( 𝑧 · 𝑥 ) = ( 𝑧 · - 1 ) ) |
26 |
25
|
rspceeqv |
⊢ ( ( - 1 ∈ ℤ ∧ - 𝑧 = ( 𝑧 · - 1 ) ) → ∃ 𝑥 ∈ ℤ - 𝑧 = ( 𝑧 · 𝑥 ) ) |
27 |
18 24 26
|
sylancr |
⊢ ( 𝑧 ∈ ℝ → ∃ 𝑥 ∈ ℤ - 𝑧 = ( 𝑧 · 𝑥 ) ) |
28 |
|
eqeq1 |
⊢ ( ( abs ‘ 𝑧 ) = - 𝑧 → ( ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ - 𝑧 = ( 𝑧 · 𝑥 ) ) ) |
29 |
28
|
rexbidv |
⊢ ( ( abs ‘ 𝑧 ) = - 𝑧 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ - 𝑧 = ( 𝑧 · 𝑥 ) ) ) |
30 |
27 29
|
syl5ibrcom |
⊢ ( 𝑧 ∈ ℝ → ( ( abs ‘ 𝑧 ) = - 𝑧 → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) ) |
31 |
|
absor |
⊢ ( 𝑧 ∈ ℝ → ( ( abs ‘ 𝑧 ) = 𝑧 ∨ ( abs ‘ 𝑧 ) = - 𝑧 ) ) |
32 |
17 30 31
|
mpjaod |
⊢ ( 𝑧 ∈ ℝ → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) |
33 |
8 32
|
syl |
⊢ ( 𝑧 ∈ ℤ → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑧 ) = ( 𝑧 · 𝑥 ) ) |
34 |
7 33
|
vtoclga |
⊢ ( 𝐴 ∈ ℤ → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) |
35 |
2 34
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) |
36 |
3
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
38 |
37
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐵 · 0 ) = 0 ) |
39 |
38
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) = ( ( 𝐴 · 𝑥 ) + 0 ) ) |
40 |
2
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
41 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
42 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
43 |
40 41 42
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
44 |
43
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 · 𝑥 ) + 0 ) = ( 𝐴 · 𝑥 ) ) |
45 |
39 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) = ( 𝐴 · 𝑥 ) ) |
46 |
45
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) ↔ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) ) ) |
47 |
|
0z |
⊢ 0 ∈ ℤ |
48 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 0 ) ) |
49 |
48
|
oveq2d |
⊢ ( 𝑦 = 0 → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) ) |
50 |
49
|
rspceeqv |
⊢ ( ( 0 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) ) → ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
51 |
47 50
|
mpan |
⊢ ( ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 0 ) ) → ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
52 |
46 51
|
syl6bir |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) → ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
53 |
52
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝐴 ) = ( 𝐴 · 𝑥 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
54 |
35 53
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
55 |
|
nnabscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℕ ) |
56 |
55
|
ex |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ ℕ ) ) |
57 |
2 56
|
syl |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ ℕ ) ) |
58 |
|
eqeq1 |
⊢ ( 𝑧 = ( abs ‘ 𝐴 ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
59 |
58
|
2rexbidv |
⊢ ( 𝑧 = ( abs ‘ 𝐴 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
60 |
59 1
|
elrab2 |
⊢ ( ( abs ‘ 𝐴 ) ∈ 𝑀 ↔ ( ( abs ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
61 |
60
|
simplbi2com |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( abs ‘ 𝐴 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) → ( ( abs ‘ 𝐴 ) ∈ ℕ → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |
62 |
54 57 61
|
sylsyld |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |