Step |
Hyp |
Ref |
Expression |
1 |
|
bezout.1 |
⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } |
2 |
|
bezout.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
3 |
|
bezout.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
4 |
|
bezout.2 |
⊢ 𝐺 = inf ( 𝑀 , ℝ , < ) |
5 |
|
bezout.5 |
⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
6 |
1
|
ssrab3 |
⊢ 𝑀 ⊆ ℕ |
7 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
8 |
6 7
|
sseqtri |
⊢ 𝑀 ⊆ ( ℤ≥ ‘ 1 ) |
9 |
1 2 3
|
bezoutlem1 |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |
10 |
|
ne0i |
⊢ ( ( abs ‘ 𝐴 ) ∈ 𝑀 → 𝑀 ≠ ∅ ) |
11 |
9 10
|
syl6 |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 → 𝑀 ≠ ∅ ) ) |
12 |
|
eqid |
⊢ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } |
13 |
12 3 2
|
bezoutlem1 |
⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
14 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
15 |
2
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
17 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
18 |
17
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑥 ∈ ℂ ) |
19 |
16 18
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
20 |
3
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
22 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
23 |
22
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑦 ∈ ℂ ) |
24 |
21 23
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐵 · 𝑦 ) ∈ ℂ ) |
25 |
19 24
|
addcomd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) |
26 |
25
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
27 |
26
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
28 |
14 27
|
syl5bb |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
29 |
28
|
rabbidv |
⊢ ( 𝜑 → { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
30 |
1 29
|
eqtrid |
⊢ ( 𝜑 → 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
31 |
30
|
eleq2d |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ∈ 𝑀 ↔ ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
32 |
13 31
|
sylibrd |
⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ 𝑀 ) ) |
33 |
|
ne0i |
⊢ ( ( abs ‘ 𝐵 ) ∈ 𝑀 → 𝑀 ≠ ∅ ) |
34 |
32 33
|
syl6 |
⊢ ( 𝜑 → ( 𝐵 ≠ 0 → 𝑀 ≠ ∅ ) ) |
35 |
|
neorian |
⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
36 |
5 35
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) |
37 |
11 34 36
|
mpjaod |
⊢ ( 𝜑 → 𝑀 ≠ ∅ ) |
38 |
|
infssuzcl |
⊢ ( ( 𝑀 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ≠ ∅ ) → inf ( 𝑀 , ℝ , < ) ∈ 𝑀 ) |
39 |
8 37 38
|
sylancr |
⊢ ( 𝜑 → inf ( 𝑀 , ℝ , < ) ∈ 𝑀 ) |
40 |
4 39
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ 𝑀 ) |