Step |
Hyp |
Ref |
Expression |
1 |
|
bezoutr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ) |
3 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) |
4 |
2 3
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∥ 1 ) |
5 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
6 |
5
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
8 |
|
1nn |
⊢ 1 ∈ ℕ |
9 |
8
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → 1 ∈ ℕ ) |
10 |
|
dvdsle |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 1 → ( 𝐴 gcd 𝐵 ) ≤ 1 ) ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 1 → ( 𝐴 gcd 𝐵 ) ≤ 1 ) ) |
12 |
4 11
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ≤ 1 ) |
13 |
|
simpll |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
14 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝑋 ) = ( 0 · 𝑋 ) ) |
15 |
|
oveq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 · 𝑌 ) = ( 0 · 𝑌 ) ) |
16 |
14 15
|
oveqan12d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 0 · 𝑋 ) + ( 0 · 𝑌 ) ) ) |
17 |
|
zcn |
⊢ ( 𝑋 ∈ ℤ → 𝑋 ∈ ℂ ) |
18 |
17
|
mul02d |
⊢ ( 𝑋 ∈ ℤ → ( 0 · 𝑋 ) = 0 ) |
19 |
|
zcn |
⊢ ( 𝑌 ∈ ℤ → 𝑌 ∈ ℂ ) |
20 |
19
|
mul02d |
⊢ ( 𝑌 ∈ ℤ → ( 0 · 𝑌 ) = 0 ) |
21 |
18 20
|
oveqan12d |
⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( ( 0 · 𝑋 ) + ( 0 · 𝑌 ) ) = ( 0 + 0 ) ) |
22 |
16 21
|
sylan9eqr |
⊢ ( ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( 0 + 0 ) ) |
23 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
24 |
22 23
|
eqtrdi |
⊢ ( ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 0 ) |
25 |
24
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 0 ) |
26 |
|
0ne1 |
⊢ 0 ≠ 1 |
27 |
26
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 0 ≠ 1 ) |
28 |
25 27
|
eqnetrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ≠ 1 ) |
29 |
28
|
ex |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ≠ 1 ) ) |
30 |
29
|
necon2bd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
31 |
30
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
32 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
33 |
13 31 32
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
34 |
|
nnle1eq1 |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ≤ 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( ( 𝐴 gcd 𝐵 ) ≤ 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
36 |
12 35
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
37 |
36
|
ex |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 → ( 𝐴 gcd 𝐵 ) = 1 ) ) |