| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bgoldbtbnd.m | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ ; 1 1 ) ) | 
						
							| 2 |  | bgoldbtbnd.n | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ; 1 1 ) ) | 
						
							| 3 |  | bgoldbtbnd.b | ⊢ ( 𝜑  →  ∀ 𝑛  ∈   Even  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  ) ) | 
						
							| 4 |  | bgoldbtbnd.d | ⊢ ( 𝜑  →  𝐷  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 5 |  | bgoldbtbnd.f | ⊢ ( 𝜑  →  𝐹  ∈  ( RePart ‘ 𝐷 ) ) | 
						
							| 6 |  | bgoldbtbnd.i | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 7 |  | bgoldbtbnd.0 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  7 ) | 
						
							| 8 |  | bgoldbtbnd.1 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  ; 1 3 ) | 
						
							| 9 |  | bgoldbtbnd.l | ⊢ ( 𝜑  →  𝑀  <  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 10 |  | bgoldbtbnd.r | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  ∈   Odd  ) | 
						
							| 12 |  | eluzge3nn | ⊢ ( 𝐷  ∈  ( ℤ≥ ‘ 3 )  →  𝐷  ∈  ℕ ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 14 |  | iccelpart | ⊢ ( 𝐷  ∈  ℕ  →  ∀ 𝑓  ∈  ( RePart ‘ 𝐷 ) ( 𝑛  ∈  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( RePart ‘ 𝐷 ) ( 𝑛  ∈  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 16 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 17 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝐷 )  =  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 18 | 16 17 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  =  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ) | 
						
							| 19 | 18 | eleq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑛  ∈  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  ↔  𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ) ) | 
						
							| 20 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 21 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑗  +  1 ) )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 22 | 20 21 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) )  ↔  𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) )  ↔  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 25 | 19 24 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑛  ∈  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) ) )  ↔  ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 26 | 25 | rspcv | ⊢ ( 𝐹  ∈  ( RePart ‘ 𝐷 )  →  ( ∀ 𝑓  ∈  ( RePart ‘ 𝐷 ) ( 𝑛  ∈  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 27 | 5 26 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑓  ∈  ( RePart ‘ 𝐷 ) ( 𝑛  ∈  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 28 |  | oddz | ⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℤ ) | 
						
							| 29 | 28 | zred | ⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℝ ) | 
						
							| 30 | 29 | rexrd | ⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℝ* ) | 
						
							| 31 | 30 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  ∈  ℝ* ) | 
						
							| 32 |  | 7re | ⊢ 7  ∈  ℝ | 
						
							| 33 |  | ltle | ⊢ ( ( 7  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  ( 7  <  𝑛  →  7  ≤  𝑛 ) ) | 
						
							| 34 | 32 29 33 | sylancr | ⊢ ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  7  ≤  𝑛 ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( 7  <  𝑛  →  ( 𝑛  ∈   Odd   →  7  ≤  𝑛 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 7  <  𝑛  ∧  𝑛  <  𝑀 )  →  ( 𝑛  ∈   Odd   →  7  ≤  𝑛 ) ) | 
						
							| 37 | 36 | impcom | ⊢ ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  7  ≤  𝑛 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  7  ≤  𝑛 ) | 
						
							| 39 |  | eluzelre | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ ; 1 1 )  →  𝑀  ∈  ℝ ) | 
						
							| 40 | 39 | rexrd | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ ; 1 1 )  →  𝑀  ∈  ℝ* ) | 
						
							| 41 | 1 40 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℝ* ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑀  ∈  ℝ* ) | 
						
							| 43 | 10 | rexrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐷 )  ∈  ℝ* ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝐹 ‘ 𝐷 )  ∈  ℝ* ) | 
						
							| 45 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  <  𝑀 ) | 
						
							| 46 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑀  <  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 47 | 31 42 44 45 46 | xrlttrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  <  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 48 | 7 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  =  ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ) | 
						
							| 49 | 48 | eleq2d | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  ↔  𝑛  ∈  ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  ↔  𝑛  ∈  ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ) ) | 
						
							| 51 | 32 | rexri | ⊢ 7  ∈  ℝ* | 
						
							| 52 |  | elico1 | ⊢ ( ( 7  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝐷 )  ∈  ℝ* )  →  ( 𝑛  ∈  ( 7 [,) ( 𝐹 ‘ 𝐷 ) )  ↔  ( 𝑛  ∈  ℝ*  ∧  7  ≤  𝑛  ∧  𝑛  <  ( 𝐹 ‘ 𝐷 ) ) ) ) | 
						
							| 53 | 51 44 52 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( 7 [,) ( 𝐹 ‘ 𝐷 ) )  ↔  ( 𝑛  ∈  ℝ*  ∧  7  ≤  𝑛  ∧  𝑛  <  ( 𝐹 ‘ 𝐷 ) ) ) ) | 
						
							| 54 | 50 53 | bitrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  ↔  ( 𝑛  ∈  ℝ*  ∧  7  ≤  𝑛  ∧  𝑛  <  ( 𝐹 ‘ 𝐷 ) ) ) ) | 
						
							| 55 | 31 38 47 54 | mpbir3and | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ) | 
						
							| 56 |  | fzo0sn0fzo1 | ⊢ ( 𝐷  ∈  ℕ  →  ( 0 ..^ 𝐷 )  =  ( { 0 }  ∪  ( 1 ..^ 𝐷 ) ) ) | 
						
							| 57 | 56 | eleq2d | ⊢ ( 𝐷  ∈  ℕ  →  ( 𝑗  ∈  ( 0 ..^ 𝐷 )  ↔  𝑗  ∈  ( { 0 }  ∪  ( 1 ..^ 𝐷 ) ) ) ) | 
						
							| 58 |  | elun | ⊢ ( 𝑗  ∈  ( { 0 }  ∪  ( 1 ..^ 𝐷 ) )  ↔  ( 𝑗  ∈  { 0 }  ∨  𝑗  ∈  ( 1 ..^ 𝐷 ) ) ) | 
						
							| 59 | 57 58 | bitrdi | ⊢ ( 𝐷  ∈  ℕ  →  ( 𝑗  ∈  ( 0 ..^ 𝐷 )  ↔  ( 𝑗  ∈  { 0 }  ∨  𝑗  ∈  ( 1 ..^ 𝐷 ) ) ) ) | 
						
							| 60 | 13 59 | syl | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 0 ..^ 𝐷 )  ↔  ( 𝑗  ∈  { 0 }  ∨  𝑗  ∈  ( 1 ..^ 𝐷 ) ) ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑗  ∈  ( 0 ..^ 𝐷 )  ↔  ( 𝑗  ∈  { 0 }  ∨  𝑗  ∈  ( 1 ..^ 𝐷 ) ) ) ) | 
						
							| 62 |  | velsn | ⊢ ( 𝑗  ∈  { 0 }  ↔  𝑗  =  0 ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 64 |  | fv0p1e1 | ⊢ ( 𝑗  =  0  →  ( 𝐹 ‘ ( 𝑗  +  1 ) )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 65 | 63 64 | oveq12d | ⊢ ( 𝑗  =  0  →  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 1 ) ) ) | 
						
							| 66 | 7 8 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 1 ) )  =  ( 7 [,) ; 1 3 ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 1 ) )  =  ( 7 [,) ; 1 3 ) ) | 
						
							| 68 | 65 67 | sylan9eq | ⊢ ( ( 𝑗  =  0  ∧  ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( 7 [,) ; 1 3 ) ) | 
						
							| 69 | 68 | eleq2d | ⊢ ( ( 𝑗  =  0  ∧  ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ↔  𝑛  ∈  ( 7 [,) ; 1 3 ) ) ) | 
						
							| 70 | 11 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑛  ∈  ( 7 [,) ; 1 3 ) )  →  𝑛  ∈   Odd  ) | 
						
							| 71 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  7  <  𝑛 ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑛  ∈  ( 7 [,) ; 1 3 ) )  →  7  <  𝑛 ) | 
						
							| 73 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑛  ∈  ( 7 [,) ; 1 3 ) )  →  𝑛  ∈  ( 7 [,) ; 1 3 ) ) | 
						
							| 74 |  | bgoldbtbndlem1 | ⊢ ( ( 𝑛  ∈   Odd   ∧  7  <  𝑛  ∧  𝑛  ∈  ( 7 [,) ; 1 3 ) )  →  𝑛  ∈   GoldbachOdd  ) | 
						
							| 75 | 70 72 73 74 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑛  ∈  ( 7 [,) ; 1 3 ) )  →  𝑛  ∈   GoldbachOdd  ) | 
						
							| 76 |  | isgbo | ⊢ ( 𝑛  ∈   GoldbachOdd   ↔  ( 𝑛  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 77 | 75 76 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑛  ∈  ( 7 [,) ; 1 3 ) )  →  ( 𝑛  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 78 | 77 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑛  ∈  ( 7 [,) ; 1 3 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 79 | 78 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( 7 [,) ; 1 3 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝑗  =  0  ∧  ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) ) )  →  ( 𝑛  ∈  ( 7 [,) ; 1 3 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 81 | 69 80 | sylbid | ⊢ ( ( 𝑗  =  0  ∧  ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 82 | 81 | ex | ⊢ ( 𝑗  =  0  →  ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 83 | 62 82 | sylbi | ⊢ ( 𝑗  ∈  { 0 }  →  ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 84 |  | fzo0ss1 | ⊢ ( 1 ..^ 𝐷 )  ⊆  ( 0 ..^ 𝐷 ) | 
						
							| 85 | 84 | sseli | ⊢ ( 𝑗  ∈  ( 1 ..^ 𝐷 )  →  𝑗  ∈  ( 0 ..^ 𝐷 ) ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 87 | 86 | eleq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐹 ‘ 𝑖 )  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 88 |  | fvoveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐹 ‘ ( 𝑖  +  1 ) )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 89 | 88 86 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 90 | 89 | breq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) )  <  ( 𝑁  −  4 )  ↔  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 ) ) ) | 
						
							| 91 | 89 | breq2d | ⊢ ( 𝑖  =  𝑗  →  ( 4  <  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) )  ↔  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 92 | 87 90 91 | 3anbi123d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝐹 ‘ 𝑖 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) ) )  ↔  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 93 | 92 | rspcv | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝐷 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) ) )  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 94 | 85 93 | syl | ⊢ ( 𝑗  ∈  ( 1 ..^ 𝐷 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑖  +  1 ) )  −  ( 𝐹 ‘ 𝑖 ) ) )  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 95 | 6 94 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 96 | 1 2 3 4 5 6 7 8 9 10 | bgoldbtbndlem4 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  𝑛  ∈   Odd  )  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ≤  4 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 97 | 96 | ad2ant2r | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ≤  4 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 98 | 97 | expcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ≤  4  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 99 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝜑 ) | 
						
							| 100 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  ∈   Odd  ) | 
						
							| 101 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑗  ∈  ( 1 ..^ 𝐷 ) ) | 
						
							| 102 |  | eqid | ⊢ ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 103 | 1 2 3 4 5 6 7 8 9 10 102 | bgoldbtbndlem3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈   Odd   ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 104 | 99 100 101 103 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 105 |  | breq2 | ⊢ ( 𝑛  =  𝑚  →  ( 4  <  𝑛  ↔  4  <  𝑚 ) ) | 
						
							| 106 |  | breq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  <  𝑁  ↔  𝑚  <  𝑁 ) ) | 
						
							| 107 | 105 106 | anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  ↔  ( 4  <  𝑚  ∧  𝑚  <  𝑁 ) ) ) | 
						
							| 108 |  | eleq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈   GoldbachEven   ↔  𝑚  ∈   GoldbachEven  ) ) | 
						
							| 109 | 107 108 | imbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  )  ↔  ( ( 4  <  𝑚  ∧  𝑚  <  𝑁 )  →  𝑚  ∈   GoldbachEven  ) ) ) | 
						
							| 110 | 109 | cbvralvw | ⊢ ( ∀ 𝑛  ∈   Even  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  )  ↔  ∀ 𝑚  ∈   Even  ( ( 4  <  𝑚  ∧  𝑚  <  𝑁 )  →  𝑚  ∈   GoldbachEven  ) ) | 
						
							| 111 |  | breq2 | ⊢ ( 𝑚  =  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  →  ( 4  <  𝑚  ↔  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 112 |  | breq1 | ⊢ ( 𝑚  =  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝑚  <  𝑁  ↔  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 ) ) | 
						
							| 113 | 111 112 | anbi12d | ⊢ ( 𝑚  =  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  →  ( ( 4  <  𝑚  ∧  𝑚  <  𝑁 )  ↔  ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 ) ) ) | 
						
							| 114 |  | eleq1 | ⊢ ( 𝑚  =  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝑚  ∈   GoldbachEven   ↔  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  ) ) | 
						
							| 115 | 113 114 | imbi12d | ⊢ ( 𝑚  =  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  →  ( ( ( 4  <  𝑚  ∧  𝑚  <  𝑁 )  →  𝑚  ∈   GoldbachEven  )  ↔  ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  ) ) ) | 
						
							| 116 | 115 | rspcv | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ∀ 𝑚  ∈   Even  ( ( 4  <  𝑚  ∧  𝑚  <  𝑁 )  →  𝑚  ∈   GoldbachEven  )  →  ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  ) ) ) | 
						
							| 117 | 110 116 | biimtrid | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ∀ 𝑛  ∈   Even  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  )  →  ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  ) ) ) | 
						
							| 118 |  | pm3.35 | ⊢ ( ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  ∧  ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  ) )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  ) | 
						
							| 119 |  | isgbe | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven   ↔  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 120 |  | eldifi | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℙ ) | 
						
							| 121 | 120 | 3ad2ant1 | ⊢ ( ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℙ ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℙ ) | 
						
							| 123 | 122 | ad5antlr | ⊢ ( ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℙ ) | 
						
							| 124 |  | eleq1 | ⊢ ( 𝑟  =  ( 𝐹 ‘ 𝑗 )  →  ( 𝑟  ∈   Odd   ↔  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) ) | 
						
							| 125 | 124 | 3anbi3d | ⊢ ( 𝑟  =  ( 𝐹 ‘ 𝑗 )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ↔  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) ) ) | 
						
							| 126 |  | oveq2 | ⊢ ( 𝑟  =  ( 𝐹 ‘ 𝑗 )  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 127 | 126 | eqeq2d | ⊢ ( 𝑟  =  ( 𝐹 ‘ 𝑗 )  →  ( 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 128 | 125 127 | anbi12d | ⊢ ( 𝑟  =  ( 𝐹 ‘ 𝑗 )  →  ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  ∧  𝑟  =  ( 𝐹 ‘ 𝑗 ) )  →  ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 130 |  | oddprmALTV | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) | 
						
							| 131 | 130 | 3ad2ant1 | ⊢ ( ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) | 
						
							| 133 | 132 | ad4antlr | ⊢ ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) | 
						
							| 134 |  | 3simpa | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  ) ) | 
						
							| 135 | 133 134 | anim12ci | ⊢ ( ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) ) | 
						
							| 136 |  | df-3an | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  )  ↔  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) ) | 
						
							| 137 | 135 136 | sylibr | ⊢ ( ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  ) ) | 
						
							| 138 | 28 | zcnd | ⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℂ ) | 
						
							| 139 | 138 | ad2antrl | ⊢ ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 140 |  | prmz | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ℙ  →  ( 𝐹 ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 141 | 140 | zcnd | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ℙ  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 142 | 120 141 | syl | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 143 | 142 | 3ad2ant1 | ⊢ ( ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 145 | 144 | ad2antlr | ⊢ ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 146 | 139 145 | npcand | ⊢ ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  +  ( 𝐹 ‘ 𝑗 ) )  =  𝑛 ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  +  ( 𝐹 ‘ 𝑗 ) )  =  𝑛 ) | 
						
							| 148 | 147 | ad2antrl | ⊢ ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  ∧  ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  +  ( 𝐹 ‘ 𝑗 ) )  =  𝑛 ) | 
						
							| 149 |  | oveq1 | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  +  ( 𝐹 ‘ 𝑗 ) )  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 150 | 148 149 | sylan9req | ⊢ ( ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  ∧  ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 151 | 150 | exp31 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  →  ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 )  →  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 152 | 151 | com23 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 )  →  ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 153 | 152 | 3impia | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 154 | 153 | impcom | ⊢ ( ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  →  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 155 | 137 154 | jca | ⊢ ( ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝐹 ‘ 𝑗 )  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 156 | 123 129 155 | rspcedvd | ⊢ ( ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  →  ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 157 | 156 | ex | ⊢ ( ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 158 | 157 | reximdva | ⊢ ( ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 159 | 158 | reximdva | ⊢ ( ( ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  𝜑 )  ∧  ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 160 | 159 | exp41 | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( 𝜑  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) | 
						
							| 161 | 160 | com25 | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) )  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) | 
						
							| 162 | 161 | imp | ⊢ ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑝  +  𝑞 ) ) )  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) | 
						
							| 163 | 119 162 | sylbi | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven   →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) | 
						
							| 164 | 163 | a1d | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven   →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) | 
						
							| 165 | 118 164 | syl | ⊢ ( ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  ∧  ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  ) )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) | 
						
							| 166 | 165 | ex | ⊢ ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) ) | 
						
							| 167 | 166 | ancoms | ⊢ ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) ) | 
						
							| 168 | 167 | com13 | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ( ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁 )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   GoldbachEven  )  →  ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) ) | 
						
							| 169 | 117 168 | syld | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ∀ 𝑛  ∈   Even  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  )  →  ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) ) | 
						
							| 170 | 169 | com23 | ⊢ ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   →  ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ∀ 𝑛  ∈   Even  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  )  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) ) | 
						
							| 171 | 170 | 3impib | ⊢ ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ∀ 𝑛  ∈   Even  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  )  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) | 
						
							| 172 | 171 | com15 | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈   Even  ( ( 4  <  𝑛  ∧  𝑛  <  𝑁 )  →  𝑛  ∈   GoldbachEven  )  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) ) | 
						
							| 173 | 3 172 | mpd | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  ( 1 ..^ 𝐷 )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) | 
						
							| 174 | 173 | impl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 175 | 174 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈   Even   ∧  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  <  𝑁  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 176 | 104 175 | syld | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∧  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 177 | 176 | expcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 178 | 29 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 179 | 140 | zred | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ℙ  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 180 | 120 179 | syl | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 181 | 180 | 3ad2ant1 | ⊢ ( ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 182 | 181 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 183 | 178 182 | resubcld | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 184 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 185 |  | lelttric | ⊢ ( ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ  ∧  4  ∈  ℝ )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ≤  4  ∨  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 186 | 183 184 185 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) )  ≤  4  ∨  4  <  ( 𝑛  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 187 | 98 177 186 | mpjaod | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 188 | 187 | ex | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℙ  ∖  { 2 } )  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) )  <  ( 𝑁  −  4 )  ∧  4  <  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  −  ( 𝐹 ‘ 𝑗 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 189 | 95 188 | mpdan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ..^ 𝐷 ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 190 | 189 | expcom | ⊢ ( 𝑗  ∈  ( 1 ..^ 𝐷 )  →  ( 𝜑  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) ) | 
						
							| 191 | 190 | impd | ⊢ ( 𝑗  ∈  ( 1 ..^ 𝐷 )  →  ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 192 | 83 191 | jaoi | ⊢ ( ( 𝑗  ∈  { 0 }  ∨  𝑗  ∈  ( 1 ..^ 𝐷 ) )  →  ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 193 | 192 | com12 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑗  ∈  { 0 }  ∨  𝑗  ∈  ( 1 ..^ 𝐷 ) )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 194 | 61 193 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑗  ∈  ( 0 ..^ 𝐷 )  →  ( 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 195 | 194 | rexlimdv | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 196 | 55 195 | embantd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 197 | 196 | ex | ⊢ ( 𝜑  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 198 | 197 | com23 | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 199 | 27 198 | syld | ⊢ ( 𝜑  →  ( ∀ 𝑓  ∈  ( RePart ‘ 𝐷 ) ( 𝑛  ∈  ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝐷 ) 𝑛  ∈  ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗  +  1 ) ) ) )  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 200 | 15 199 | mpd | ⊢ ( 𝜑  →  ( ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 201 | 200 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 202 | 11 201 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  ( 𝑛  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 203 | 202 76 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈   Odd   ∧  ( 7  <  𝑛  ∧  𝑛  <  𝑀 ) ) )  →  𝑛  ∈   GoldbachOdd  ) | 
						
							| 204 | 203 | exp32 | ⊢ ( 𝜑  →  ( 𝑛  ∈   Odd   →  ( ( 7  <  𝑛  ∧  𝑛  <  𝑀 )  →  𝑛  ∈   GoldbachOdd  ) ) ) | 
						
							| 205 | 204 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑛  ∈   Odd  ( ( 7  <  𝑛  ∧  𝑛  <  𝑀 )  →  𝑛  ∈   GoldbachOdd  ) ) |