| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 7re | ⊢ 7  ∈  ℝ | 
						
							| 2 | 1 | rexri | ⊢ 7  ∈  ℝ* | 
						
							| 3 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 4 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 5 | 3 4 | decnncl | ⊢ ; 1 3  ∈  ℕ | 
						
							| 6 | 5 | nnrei | ⊢ ; 1 3  ∈  ℝ | 
						
							| 7 | 6 | rexri | ⊢ ; 1 3  ∈  ℝ* | 
						
							| 8 |  | elico1 | ⊢ ( ( 7  ∈  ℝ*  ∧  ; 1 3  ∈  ℝ* )  →  ( 𝑁  ∈  ( 7 [,) ; 1 3 )  ↔  ( 𝑁  ∈  ℝ*  ∧  7  ≤  𝑁  ∧  𝑁  <  ; 1 3 ) ) ) | 
						
							| 9 | 2 7 8 | mp2an | ⊢ ( 𝑁  ∈  ( 7 [,) ; 1 3 )  ↔  ( 𝑁  ∈  ℝ*  ∧  7  ≤  𝑁  ∧  𝑁  <  ; 1 3 ) ) | 
						
							| 10 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 11 | 10 | nnzi | ⊢ 7  ∈  ℤ | 
						
							| 12 |  | oddz | ⊢ ( 𝑁  ∈   Odd   →  𝑁  ∈  ℤ ) | 
						
							| 13 |  | zltp1le | ⊢ ( ( 7  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 7  <  𝑁  ↔  ( 7  +  1 )  ≤  𝑁 ) ) | 
						
							| 14 |  | 7p1e8 | ⊢ ( 7  +  1 )  =  8 | 
						
							| 15 | 14 | breq1i | ⊢ ( ( 7  +  1 )  ≤  𝑁  ↔  8  ≤  𝑁 ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( 7  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 7  +  1 )  ≤  𝑁  ↔  8  ≤  𝑁 ) ) | 
						
							| 17 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 18 | 17 | a1i | ⊢ ( 7  ∈  ℤ  →  8  ∈  ℝ ) | 
						
							| 19 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 20 |  | leloe | ⊢ ( ( 8  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 8  ≤  𝑁  ↔  ( 8  <  𝑁  ∨  8  =  𝑁 ) ) ) | 
						
							| 21 | 18 19 20 | syl2an | ⊢ ( ( 7  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 8  ≤  𝑁  ↔  ( 8  <  𝑁  ∨  8  =  𝑁 ) ) ) | 
						
							| 22 | 13 16 21 | 3bitrd | ⊢ ( ( 7  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 7  <  𝑁  ↔  ( 8  <  𝑁  ∨  8  =  𝑁 ) ) ) | 
						
							| 23 | 11 12 22 | sylancr | ⊢ ( 𝑁  ∈   Odd   →  ( 7  <  𝑁  ↔  ( 8  <  𝑁  ∨  8  =  𝑁 ) ) ) | 
						
							| 24 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 25 | 24 | nnzi | ⊢ 8  ∈  ℤ | 
						
							| 26 |  | zltp1le | ⊢ ( ( 8  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 8  <  𝑁  ↔  ( 8  +  1 )  ≤  𝑁 ) ) | 
						
							| 27 | 25 12 26 | sylancr | ⊢ ( 𝑁  ∈   Odd   →  ( 8  <  𝑁  ↔  ( 8  +  1 )  ≤  𝑁 ) ) | 
						
							| 28 |  | 8p1e9 | ⊢ ( 8  +  1 )  =  9 | 
						
							| 29 | 28 | breq1i | ⊢ ( ( 8  +  1 )  ≤  𝑁  ↔  9  ≤  𝑁 ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ( ( 8  +  1 )  ≤  𝑁  ↔  9  ≤  𝑁 ) ) | 
						
							| 31 |  | 9re | ⊢ 9  ∈  ℝ | 
						
							| 32 | 31 | a1i | ⊢ ( 𝑁  ∈   Odd   →  9  ∈  ℝ ) | 
						
							| 33 | 12 | zred | ⊢ ( 𝑁  ∈   Odd   →  𝑁  ∈  ℝ ) | 
						
							| 34 | 32 33 | leloed | ⊢ ( 𝑁  ∈   Odd   →  ( 9  ≤  𝑁  ↔  ( 9  <  𝑁  ∨  9  =  𝑁 ) ) ) | 
						
							| 35 | 27 30 34 | 3bitrd | ⊢ ( 𝑁  ∈   Odd   →  ( 8  <  𝑁  ↔  ( 9  <  𝑁  ∨  9  =  𝑁 ) ) ) | 
						
							| 36 |  | 9nn | ⊢ 9  ∈  ℕ | 
						
							| 37 | 36 | nnzi | ⊢ 9  ∈  ℤ | 
						
							| 38 |  | zltp1le | ⊢ ( ( 9  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 9  <  𝑁  ↔  ( 9  +  1 )  ≤  𝑁 ) ) | 
						
							| 39 | 37 12 38 | sylancr | ⊢ ( 𝑁  ∈   Odd   →  ( 9  <  𝑁  ↔  ( 9  +  1 )  ≤  𝑁 ) ) | 
						
							| 40 |  | 9p1e10 | ⊢ ( 9  +  1 )  =  ; 1 0 | 
						
							| 41 | 40 | breq1i | ⊢ ( ( 9  +  1 )  ≤  𝑁  ↔  ; 1 0  ≤  𝑁 ) | 
						
							| 42 | 41 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ( ( 9  +  1 )  ≤  𝑁  ↔  ; 1 0  ≤  𝑁 ) ) | 
						
							| 43 |  | 10re | ⊢ ; 1 0  ∈  ℝ | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ; 1 0  ∈  ℝ ) | 
						
							| 45 | 44 33 | leloed | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 0  ≤  𝑁  ↔  ( ; 1 0  <  𝑁  ∨  ; 1 0  =  𝑁 ) ) ) | 
						
							| 46 | 39 42 45 | 3bitrd | ⊢ ( 𝑁  ∈   Odd   →  ( 9  <  𝑁  ↔  ( ; 1 0  <  𝑁  ∨  ; 1 0  =  𝑁 ) ) ) | 
						
							| 47 |  | 10nn | ⊢ ; 1 0  ∈  ℕ | 
						
							| 48 | 47 | nnzi | ⊢ ; 1 0  ∈  ℤ | 
						
							| 49 |  | zltp1le | ⊢ ( ( ; 1 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ; 1 0  <  𝑁  ↔  ( ; 1 0  +  1 )  ≤  𝑁 ) ) | 
						
							| 50 | 48 12 49 | sylancr | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 0  <  𝑁  ↔  ( ; 1 0  +  1 )  ≤  𝑁 ) ) | 
						
							| 51 |  | dec10p | ⊢ ( ; 1 0  +  1 )  =  ; 1 1 | 
						
							| 52 | 51 | breq1i | ⊢ ( ( ; 1 0  +  1 )  ≤  𝑁  ↔  ; 1 1  ≤  𝑁 ) | 
						
							| 53 | 52 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ( ( ; 1 0  +  1 )  ≤  𝑁  ↔  ; 1 1  ≤  𝑁 ) ) | 
						
							| 54 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 55 | 3 54 | decnncl | ⊢ ; 1 1  ∈  ℕ | 
						
							| 56 | 55 | nnrei | ⊢ ; 1 1  ∈  ℝ | 
						
							| 57 | 56 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ; 1 1  ∈  ℝ ) | 
						
							| 58 | 57 33 | leloed | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 1  ≤  𝑁  ↔  ( ; 1 1  <  𝑁  ∨  ; 1 1  =  𝑁 ) ) ) | 
						
							| 59 | 50 53 58 | 3bitrd | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 0  <  𝑁  ↔  ( ; 1 1  <  𝑁  ∨  ; 1 1  =  𝑁 ) ) ) | 
						
							| 60 | 55 | nnzi | ⊢ ; 1 1  ∈  ℤ | 
						
							| 61 |  | zltp1le | ⊢ ( ( ; 1 1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ; 1 1  <  𝑁  ↔  ( ; 1 1  +  1 )  ≤  𝑁 ) ) | 
						
							| 62 | 60 12 61 | sylancr | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 1  <  𝑁  ↔  ( ; 1 1  +  1 )  ≤  𝑁 ) ) | 
						
							| 63 | 51 | eqcomi | ⊢ ; 1 1  =  ( ; 1 0  +  1 ) | 
						
							| 64 | 63 | oveq1i | ⊢ ( ; 1 1  +  1 )  =  ( ( ; 1 0  +  1 )  +  1 ) | 
						
							| 65 | 47 | nncni | ⊢ ; 1 0  ∈  ℂ | 
						
							| 66 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 67 | 65 66 66 | addassi | ⊢ ( ( ; 1 0  +  1 )  +  1 )  =  ( ; 1 0  +  ( 1  +  1 ) ) | 
						
							| 68 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 69 | 68 | oveq2i | ⊢ ( ; 1 0  +  ( 1  +  1 ) )  =  ( ; 1 0  +  2 ) | 
						
							| 70 |  | dec10p | ⊢ ( ; 1 0  +  2 )  =  ; 1 2 | 
						
							| 71 | 69 70 | eqtri | ⊢ ( ; 1 0  +  ( 1  +  1 ) )  =  ; 1 2 | 
						
							| 72 | 64 67 71 | 3eqtri | ⊢ ( ; 1 1  +  1 )  =  ; 1 2 | 
						
							| 73 | 72 | breq1i | ⊢ ( ( ; 1 1  +  1 )  ≤  𝑁  ↔  ; 1 2  ≤  𝑁 ) | 
						
							| 74 | 73 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ( ( ; 1 1  +  1 )  ≤  𝑁  ↔  ; 1 2  ≤  𝑁 ) ) | 
						
							| 75 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 76 | 3 75 | decnncl | ⊢ ; 1 2  ∈  ℕ | 
						
							| 77 | 76 | nnrei | ⊢ ; 1 2  ∈  ℝ | 
						
							| 78 | 77 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ; 1 2  ∈  ℝ ) | 
						
							| 79 | 78 33 | leloed | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 2  ≤  𝑁  ↔  ( ; 1 2  <  𝑁  ∨  ; 1 2  =  𝑁 ) ) ) | 
						
							| 80 | 62 74 79 | 3bitrd | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 1  <  𝑁  ↔  ( ; 1 2  <  𝑁  ∨  ; 1 2  =  𝑁 ) ) ) | 
						
							| 81 | 76 | nnzi | ⊢ ; 1 2  ∈  ℤ | 
						
							| 82 |  | zltp1le | ⊢ ( ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ; 1 2  <  𝑁  ↔  ( ; 1 2  +  1 )  ≤  𝑁 ) ) | 
						
							| 83 | 81 12 82 | sylancr | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 2  <  𝑁  ↔  ( ; 1 2  +  1 )  ≤  𝑁 ) ) | 
						
							| 84 | 70 | eqcomi | ⊢ ; 1 2  =  ( ; 1 0  +  2 ) | 
						
							| 85 | 84 | oveq1i | ⊢ ( ; 1 2  +  1 )  =  ( ( ; 1 0  +  2 )  +  1 ) | 
						
							| 86 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 87 | 65 86 66 | addassi | ⊢ ( ( ; 1 0  +  2 )  +  1 )  =  ( ; 1 0  +  ( 2  +  1 ) ) | 
						
							| 88 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 89 | 88 | oveq2i | ⊢ ( ; 1 0  +  ( 2  +  1 ) )  =  ( ; 1 0  +  3 ) | 
						
							| 90 |  | dec10p | ⊢ ( ; 1 0  +  3 )  =  ; 1 3 | 
						
							| 91 | 89 90 | eqtri | ⊢ ( ; 1 0  +  ( 2  +  1 ) )  =  ; 1 3 | 
						
							| 92 | 85 87 91 | 3eqtri | ⊢ ( ; 1 2  +  1 )  =  ; 1 3 | 
						
							| 93 | 92 | breq1i | ⊢ ( ( ; 1 2  +  1 )  ≤  𝑁  ↔  ; 1 3  ≤  𝑁 ) | 
						
							| 94 | 93 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ( ( ; 1 2  +  1 )  ≤  𝑁  ↔  ; 1 3  ≤  𝑁 ) ) | 
						
							| 95 | 6 | a1i | ⊢ ( 𝑁  ∈   Odd   →  ; 1 3  ∈  ℝ ) | 
						
							| 96 | 95 33 | lenltd | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 3  ≤  𝑁  ↔  ¬  𝑁  <  ; 1 3 ) ) | 
						
							| 97 | 83 94 96 | 3bitrd | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 2  <  𝑁  ↔  ¬  𝑁  <  ; 1 3 ) ) | 
						
							| 98 |  | pm2.21 | ⊢ ( ¬  𝑁  <  ; 1 3  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 99 | 97 98 | biimtrdi | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 2  <  𝑁  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 100 | 99 | com12 | ⊢ ( ; 1 2  <  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 101 |  | eleq1 | ⊢ ( ; 1 2  =  𝑁  →  ( ; 1 2  ∈   Odd   ↔  𝑁  ∈   Odd  ) ) | 
						
							| 102 |  | 6p6e12 | ⊢ ( 6  +  6 )  =  ; 1 2 | 
						
							| 103 |  | 6even | ⊢ 6  ∈   Even | 
						
							| 104 |  | epee | ⊢ ( ( 6  ∈   Even   ∧  6  ∈   Even  )  →  ( 6  +  6 )  ∈   Even  ) | 
						
							| 105 | 103 103 104 | mp2an | ⊢ ( 6  +  6 )  ∈   Even | 
						
							| 106 | 102 105 | eqeltrri | ⊢ ; 1 2  ∈   Even | 
						
							| 107 |  | evennodd | ⊢ ( ; 1 2  ∈   Even   →  ¬  ; 1 2  ∈   Odd  ) | 
						
							| 108 | 106 107 | ax-mp | ⊢ ¬  ; 1 2  ∈   Odd | 
						
							| 109 | 108 | pm2.21i | ⊢ ( ; 1 2  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 110 | 101 109 | biimtrrdi | ⊢ ( ; 1 2  =  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 111 | 100 110 | jaoi | ⊢ ( ( ; 1 2  <  𝑁  ∨  ; 1 2  =  𝑁 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 112 | 111 | com12 | ⊢ ( 𝑁  ∈   Odd   →  ( ( ; 1 2  <  𝑁  ∨  ; 1 2  =  𝑁 )  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 113 | 80 112 | sylbid | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 1  <  𝑁  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 114 | 113 | com12 | ⊢ ( ; 1 1  <  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 115 |  | 11gbo | ⊢ ; 1 1  ∈   GoldbachOdd | 
						
							| 116 |  | eleq1 | ⊢ ( ; 1 1  =  𝑁  →  ( ; 1 1  ∈   GoldbachOdd   ↔  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 117 | 115 116 | mpbii | ⊢ ( ; 1 1  =  𝑁  →  𝑁  ∈   GoldbachOdd  ) | 
						
							| 118 | 117 | 2a1d | ⊢ ( ; 1 1  =  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 119 | 114 118 | jaoi | ⊢ ( ( ; 1 1  <  𝑁  ∨  ; 1 1  =  𝑁 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 120 | 119 | com12 | ⊢ ( 𝑁  ∈   Odd   →  ( ( ; 1 1  <  𝑁  ∨  ; 1 1  =  𝑁 )  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 121 | 59 120 | sylbid | ⊢ ( 𝑁  ∈   Odd   →  ( ; 1 0  <  𝑁  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 122 | 121 | com12 | ⊢ ( ; 1 0  <  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 123 |  | eleq1 | ⊢ ( ; 1 0  =  𝑁  →  ( ; 1 0  ∈   Odd   ↔  𝑁  ∈   Odd  ) ) | 
						
							| 124 |  | 5p5e10 | ⊢ ( 5  +  5 )  =  ; 1 0 | 
						
							| 125 |  | 5odd | ⊢ 5  ∈   Odd | 
						
							| 126 |  | opoeALTV | ⊢ ( ( 5  ∈   Odd   ∧  5  ∈   Odd  )  →  ( 5  +  5 )  ∈   Even  ) | 
						
							| 127 | 125 125 126 | mp2an | ⊢ ( 5  +  5 )  ∈   Even | 
						
							| 128 | 124 127 | eqeltrri | ⊢ ; 1 0  ∈   Even | 
						
							| 129 |  | evennodd | ⊢ ( ; 1 0  ∈   Even   →  ¬  ; 1 0  ∈   Odd  ) | 
						
							| 130 | 128 129 | ax-mp | ⊢ ¬  ; 1 0  ∈   Odd | 
						
							| 131 | 130 | pm2.21i | ⊢ ( ; 1 0  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 132 | 123 131 | biimtrrdi | ⊢ ( ; 1 0  =  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 133 | 122 132 | jaoi | ⊢ ( ( ; 1 0  <  𝑁  ∨  ; 1 0  =  𝑁 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 134 | 133 | com12 | ⊢ ( 𝑁  ∈   Odd   →  ( ( ; 1 0  <  𝑁  ∨  ; 1 0  =  𝑁 )  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 135 | 46 134 | sylbid | ⊢ ( 𝑁  ∈   Odd   →  ( 9  <  𝑁  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 136 | 135 | com12 | ⊢ ( 9  <  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 137 |  | 9gbo | ⊢ 9  ∈   GoldbachOdd | 
						
							| 138 |  | eleq1 | ⊢ ( 9  =  𝑁  →  ( 9  ∈   GoldbachOdd   ↔  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 139 | 137 138 | mpbii | ⊢ ( 9  =  𝑁  →  𝑁  ∈   GoldbachOdd  ) | 
						
							| 140 | 139 | 2a1d | ⊢ ( 9  =  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 141 | 136 140 | jaoi | ⊢ ( ( 9  <  𝑁  ∨  9  =  𝑁 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 142 | 141 | com12 | ⊢ ( 𝑁  ∈   Odd   →  ( ( 9  <  𝑁  ∨  9  =  𝑁 )  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 143 | 35 142 | sylbid | ⊢ ( 𝑁  ∈   Odd   →  ( 8  <  𝑁  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 144 | 143 | com12 | ⊢ ( 8  <  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 145 |  | eleq1 | ⊢ ( 8  =  𝑁  →  ( 8  ∈   Odd   ↔  𝑁  ∈   Odd  ) ) | 
						
							| 146 |  | 8even | ⊢ 8  ∈   Even | 
						
							| 147 |  | evennodd | ⊢ ( 8  ∈   Even   →  ¬  8  ∈   Odd  ) | 
						
							| 148 | 146 147 | ax-mp | ⊢ ¬  8  ∈   Odd | 
						
							| 149 | 148 | pm2.21i | ⊢ ( 8  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 150 | 145 149 | biimtrrdi | ⊢ ( 8  =  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 151 | 144 150 | jaoi | ⊢ ( ( 8  <  𝑁  ∨  8  =  𝑁 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 152 | 151 | com12 | ⊢ ( 𝑁  ∈   Odd   →  ( ( 8  <  𝑁  ∨  8  =  𝑁 )  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 153 | 23 152 | sylbid | ⊢ ( 𝑁  ∈   Odd   →  ( 7  <  𝑁  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) ) | 
						
							| 154 | 153 | imp | ⊢ ( ( 𝑁  ∈   Odd   ∧  7  <  𝑁 )  →  ( 𝑁  <  ; 1 3  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 155 | 154 | com12 | ⊢ ( 𝑁  <  ; 1 3  →  ( ( 𝑁  ∈   Odd   ∧  7  <  𝑁 )  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 156 | 155 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℝ*  ∧  7  ≤  𝑁  ∧  𝑁  <  ; 1 3 )  →  ( ( 𝑁  ∈   Odd   ∧  7  <  𝑁 )  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 157 | 156 | com12 | ⊢ ( ( 𝑁  ∈   Odd   ∧  7  <  𝑁 )  →  ( ( 𝑁  ∈  ℝ*  ∧  7  ≤  𝑁  ∧  𝑁  <  ; 1 3 )  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 158 | 9 157 | biimtrid | ⊢ ( ( 𝑁  ∈   Odd   ∧  7  <  𝑁 )  →  ( 𝑁  ∈  ( 7 [,) ; 1 3 )  →  𝑁  ∈   GoldbachOdd  ) ) | 
						
							| 159 | 158 | 3impia | ⊢ ( ( 𝑁  ∈   Odd   ∧  7  <  𝑁  ∧  𝑁  ∈  ( 7 [,) ; 1 3 ) )  →  𝑁  ∈   GoldbachOdd  ) |