Metamath Proof Explorer


Theorem bi2anan9r

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996)

Ref Expression
Hypotheses bi2an9.1 ( 𝜑 → ( 𝜓𝜒 ) )
bi2an9.2 ( 𝜃 → ( 𝜏𝜂 ) )
Assertion bi2anan9r ( ( 𝜃𝜑 ) → ( ( 𝜓𝜏 ) ↔ ( 𝜒𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 bi2an9.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bi2an9.2 ( 𝜃 → ( 𝜏𝜂 ) )
3 1 2 bi2anan9 ( ( 𝜑𝜃 ) → ( ( 𝜓𝜏 ) ↔ ( 𝜒𝜂 ) ) )
4 3 ancoms ( ( 𝜃𝜑 ) → ( ( 𝜓𝜏 ) ↔ ( 𝜒𝜂 ) ) )