Step |
Hyp |
Ref |
Expression |
1 |
|
pm4.71r |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |
2 |
|
bicom |
⊢ ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ) |
3 |
|
bicom |
⊢ ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ) |
4 |
|
pm5.32 |
⊢ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) |
5 |
3 4
|
bibi12i |
⊢ ( ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ) ↔ ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |
6 |
|
bicom |
⊢ ( ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ↔ ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ) ) |
7 |
|
biluk |
⊢ ( ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ↔ ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |
8 |
5 6 7
|
3bitr4ri |
⊢ ( ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ↔ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |
9 |
1 2 8
|
3bitri |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |