Metamath Proof Explorer


Theorem biadani

Description: Inference associated with biadan . (Contributed by BJ, 4-Mar-2023)

Ref Expression
Hypothesis biadani.1 ( 𝜑𝜓 )
Assertion biadani ( ( 𝜓 → ( 𝜑𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 biadani.1 ( 𝜑𝜓 )
2 biadan ( ( 𝜑𝜓 ) ↔ ( ( 𝜓 → ( 𝜑𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓𝜒 ) ) ) )
3 1 2 mpbi ( ( 𝜓 → ( 𝜑𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓𝜒 ) ) )