Description: Inference associated with biadan . (Contributed by BJ, 4-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | biadani.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| Assertion | biadani | ⊢ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadani.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | biadan | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) |