Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical conjunction
biadaniALT
Metamath Proof Explorer
Description: Alternate proof of biadani not using biadan . (Contributed by BJ , 4-Mar-2023) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
biadani.1
⊢ ( 𝜑 → 𝜓 )
Assertion
biadaniALT
⊢ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) )
Proof
Step
Hyp
Ref
Expression
1
biadani.1
⊢ ( 𝜑 → 𝜓 )
2
pm5.32
⊢ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) )
3
1
pm4.71ri
⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) )
4
3
bibi1i
⊢ ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) )
5
2 4
bitr4i
⊢ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) )