Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bian1d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
Assertion | bian1d | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bian1d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
2 | 1 | biimpd | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ) ) ) |
3 | 2 | adantld | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) → ( 𝜒 ∧ 𝜃 ) ) ) |
4 | simpl | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜒 ) | |
5 | 4 | a1i | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜒 ) ) |
6 | 1 | biimprd | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜓 ) ) |
7 | 5 6 | jcad | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜓 ) ) ) |
8 | 3 7 | impbid | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |