Metamath Proof Explorer


Theorem bian1d

Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017) (Proof shortened by Hongxiu Chen, 29-Jun-2025)

Ref Expression
Hypothesis bian1d.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
Assertion bian1d ( 𝜑 → ( ( 𝜒𝜓 ) ↔ ( 𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 bian1d.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
2 ibar ( 𝜒 → ( 𝜃 ↔ ( 𝜒𝜃 ) ) )
3 2 bicomd ( 𝜒 → ( ( 𝜒𝜃 ) ↔ 𝜃 ) )
4 1 3 sylan9bb ( ( 𝜑𝜒 ) → ( 𝜓𝜃 ) )
5 4 ex ( 𝜑 → ( 𝜒 → ( 𝜓𝜃 ) ) )
6 5 pm5.32d ( 𝜑 → ( ( 𝜒𝜓 ) ↔ ( 𝜒𝜃 ) ) )