Metamath Proof Explorer


Theorem bianass

Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Hypothesis bianass.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion bianass ( ( 𝜂𝜑 ) ↔ ( ( 𝜂𝜓 ) ∧ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 bianass.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 anbi2i ( ( 𝜂𝜑 ) ↔ ( 𝜂 ∧ ( 𝜓𝜒 ) ) )
3 anass ( ( ( 𝜂𝜓 ) ∧ 𝜒 ) ↔ ( 𝜂 ∧ ( 𝜓𝜒 ) ) )
4 2 3 bitr4i ( ( 𝜂𝜑 ) ↔ ( ( 𝜂𝜓 ) ∧ 𝜒 ) )