Metamath Proof Explorer


Theorem bianassc

Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022)

Ref Expression
Hypothesis bianass.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion bianassc ( ( 𝜂𝜑 ) ↔ ( ( 𝜓𝜂 ) ∧ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 bianass.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 bianass ( ( 𝜂𝜑 ) ↔ ( ( 𝜂𝜓 ) ∧ 𝜒 ) )
3 ancom ( ( 𝜂𝜓 ) ↔ ( 𝜓𝜂 ) )
4 3 anbi1i ( ( ( 𝜂𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜓𝜂 ) ∧ 𝜒 ) )
5 2 4 bitri ( ( 𝜂𝜑 ) ↔ ( ( 𝜓𝜂 ) ∧ 𝜒 ) )