Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bianass.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
Assertion | bianassc | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜂 ) ∧ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianass.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
2 | 1 | bianass | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( ( 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ) |
3 | ancom | ⊢ ( ( 𝜂 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜂 ) ) | |
4 | 3 | anbi1i | ⊢ ( ( ( 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜂 ) ∧ 𝜒 ) ) |
5 | 2 4 | bitri | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜂 ) ∧ 𝜒 ) ) |