Metamath Proof Explorer


Theorem biancomi

Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018)

Ref Expression
Hypothesis biancomi.1 ( 𝜑 ↔ ( 𝜒𝜓 ) )
Assertion biancomi ( 𝜑 ↔ ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 biancomi.1 ( 𝜑 ↔ ( 𝜒𝜓 ) )
2 ancom ( ( 𝜓𝜒 ) ↔ ( 𝜒𝜓 ) )
3 1 2 bitr4i ( 𝜑 ↔ ( 𝜓𝜒 ) )