Description: A transitive law of equivalence. Compare Theorem *4.22 of WhiteheadRussell p. 117. (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biantr | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜓 ) ) → ( 𝜑 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝜒 ↔ 𝜓 ) → ( 𝜒 ↔ 𝜓 ) ) | |
| 2 | 1 | bibi2d | ⊢ ( ( 𝜒 ↔ 𝜓 ) → ( ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 3 | 2 | biimparc | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜓 ) ) → ( 𝜑 ↔ 𝜒 ) ) |