| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm5.501 |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 2 |
1
|
bibi1d |
⊢ ( 𝜑 → ( ( 𝜓 ↔ 𝜒 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ) ) |
| 3 |
|
pm5.501 |
⊢ ( 𝜑 → ( ( 𝜓 ↔ 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) ) |
| 4 |
2 3
|
bitr3d |
⊢ ( 𝜑 → ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) ) |
| 5 |
|
nbbn |
⊢ ( ( ¬ 𝜓 ↔ 𝜒 ) ↔ ¬ ( 𝜓 ↔ 𝜒 ) ) |
| 6 |
|
nbn2 |
⊢ ( ¬ 𝜑 → ( ¬ 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 7 |
6
|
bibi1d |
⊢ ( ¬ 𝜑 → ( ( ¬ 𝜓 ↔ 𝜒 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ) ) |
| 8 |
5 7
|
bitr3id |
⊢ ( ¬ 𝜑 → ( ¬ ( 𝜓 ↔ 𝜒 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ) ) |
| 9 |
|
nbn2 |
⊢ ( ¬ 𝜑 → ( ¬ ( 𝜓 ↔ 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) ) |
| 10 |
8 9
|
bitr3d |
⊢ ( ¬ 𝜑 → ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) ) |
| 11 |
4 10
|
pm2.61i |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) |