Metamath Proof Explorer


Theorem bibi12i

Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses bibi2i.1 ( 𝜑𝜓 )
bibi12i.2 ( 𝜒𝜃 )
Assertion bibi12i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 bibi2i.1 ( 𝜑𝜓 )
2 bibi12i.2 ( 𝜒𝜃 )
3 2 bibi2i ( ( 𝜑𝜒 ) ↔ ( 𝜑𝜃 ) )
4 1 bibi1i ( ( 𝜑𝜃 ) ↔ ( 𝜓𝜃 ) )
5 3 4 bitri ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )