Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | bibi1d | ⊢ ( 𝜑 → ( ( 𝜓 ↔ 𝜃 ) ↔ ( 𝜒 ↔ 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | bibi2d | ⊢ ( 𝜑 → ( ( 𝜃 ↔ 𝜓 ) ↔ ( 𝜃 ↔ 𝜒 ) ) ) |
3 | bicom | ⊢ ( ( 𝜓 ↔ 𝜃 ) ↔ ( 𝜃 ↔ 𝜓 ) ) | |
4 | bicom | ⊢ ( ( 𝜒 ↔ 𝜃 ) ↔ ( 𝜃 ↔ 𝜒 ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝜓 ↔ 𝜃 ) ↔ ( 𝜒 ↔ 𝜃 ) ) ) |