Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | bibi1d | ⊢ ( 𝜑 → ( ( 𝜓 ↔ 𝜃 ) ↔ ( 𝜒 ↔ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | bibi2d | ⊢ ( 𝜑 → ( ( 𝜃 ↔ 𝜓 ) ↔ ( 𝜃 ↔ 𝜒 ) ) ) |
| 3 | bicom | ⊢ ( ( 𝜓 ↔ 𝜃 ) ↔ ( 𝜃 ↔ 𝜓 ) ) | |
| 4 | bicom | ⊢ ( ( 𝜒 ↔ 𝜃 ) ↔ ( 𝜃 ↔ 𝜒 ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝜓 ↔ 𝜃 ) ↔ ( 𝜒 ↔ 𝜃 ) ) ) |