Metamath Proof Explorer


Theorem bibi2d

Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993) (Proof shortened by Wolf Lammen, 19-May-2013)

Ref Expression
Hypothesis imbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion bibi2d ( 𝜑 → ( ( 𝜃𝜓 ) ↔ ( 𝜃𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 imbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 pm5.74i ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) )
3 2 bibi2i ( ( ( 𝜑𝜃 ) ↔ ( 𝜑𝜓 ) ) ↔ ( ( 𝜑𝜃 ) ↔ ( 𝜑𝜒 ) ) )
4 pm5.74 ( ( 𝜑 → ( 𝜃𝜓 ) ) ↔ ( ( 𝜑𝜃 ) ↔ ( 𝜑𝜓 ) ) )
5 pm5.74 ( ( 𝜑 → ( 𝜃𝜒 ) ) ↔ ( ( 𝜑𝜃 ) ↔ ( 𝜑𝜒 ) ) )
6 3 4 5 3bitr4i ( ( 𝜑 → ( 𝜃𝜓 ) ) ↔ ( 𝜑 → ( 𝜃𝜒 ) ) )
7 6 pm5.74ri ( 𝜑 → ( ( 𝜃𝜓 ) ↔ ( 𝜃𝜒 ) ) )