Metamath Proof Explorer
Description: Eliminate an hypothesis th in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
bibiad.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
|
|
bibiad.2 |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
|
|
bibiad.3 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
bibiad |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bibiad.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
| 2 |
|
bibiad.2 |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
| 3 |
|
bibiad.3 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 4 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) |
| 6 |
3
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) → 𝜒 ) |
| 7 |
4 1 5 6
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
| 8 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜑 ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜒 ) |
| 10 |
3
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) → 𝜓 ) |
| 11 |
8 2 9 10
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜓 ) |
| 12 |
7 11
|
impbida |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |