Metamath Proof Explorer


Theorem bibiad

Description: Eliminate an hypothesis th in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses bibiad.1 ( ( 𝜑𝜓 ) → 𝜃 )
bibiad.2 ( ( 𝜑𝜒 ) → 𝜃 )
bibiad.3 ( ( 𝜑𝜃 ) → ( 𝜓𝜒 ) )
Assertion bibiad ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 bibiad.1 ( ( 𝜑𝜓 ) → 𝜃 )
2 bibiad.2 ( ( 𝜑𝜒 ) → 𝜃 )
3 bibiad.3 ( ( 𝜑𝜃 ) → ( 𝜓𝜒 ) )
4 simpl ( ( 𝜑𝜓 ) → 𝜑 )
5 simpr ( ( 𝜑𝜓 ) → 𝜓 )
6 3 biimpa ( ( ( 𝜑𝜃 ) ∧ 𝜓 ) → 𝜒 )
7 4 1 5 6 syl21anc ( ( 𝜑𝜓 ) → 𝜒 )
8 simpl ( ( 𝜑𝜒 ) → 𝜑 )
9 simpr ( ( 𝜑𝜒 ) → 𝜒 )
10 3 biimpar ( ( ( 𝜑𝜃 ) ∧ 𝜒 ) → 𝜓 )
11 8 2 9 10 syl21anc ( ( 𝜑𝜒 ) → 𝜓 )
12 7 11 impbida ( 𝜑 → ( 𝜓𝜒 ) )