Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007) (Proof shortened by Wolf Lammen, 28-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | bibif | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbn2 | ⊢ ( ¬ 𝜓 → ( ¬ 𝜑 ↔ ( 𝜓 ↔ 𝜑 ) ) ) | |
2 | bicom | ⊢ ( ( 𝜓 ↔ 𝜑 ) ↔ ( 𝜑 ↔ 𝜓 ) ) | |
3 | 1 2 | bitr2di | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ 𝜑 ) ) |