Description: Commutative law for the biconditional. Theorem *4.21 of WhiteheadRussell p. 117. (Contributed by NM, 11-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | bicom | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜓 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 ↔ 𝜑 ) ) | |
2 | bicom1 | ⊢ ( ( 𝜓 ↔ 𝜑 ) → ( 𝜑 ↔ 𝜓 ) ) | |
3 | 1 2 | impbii | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜓 ↔ 𝜑 ) ) |