Description: Commutative law for the biconditional. Theorem *4.21 of WhiteheadRussell p. 117. (Contributed by NM, 11-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bicom | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜓 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 ↔ 𝜑 ) ) | |
| 2 | bicom1 | ⊢ ( ( 𝜓 ↔ 𝜑 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 1 2 | impbii | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜓 ↔ 𝜑 ) ) |