Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | bicom1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
2 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
3 | 1 2 | impbid | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 ↔ 𝜑 ) ) |