Metamath Proof Explorer


Theorem bicom1

Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012)

Ref Expression
Assertion bicom1 ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 biimpr ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
2 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
3 1 2 impbid ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )