Description: Biconditional of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bicontr | ⊢ ( ( ¬ 𝜑 ↔ 𝜑 ) ↔ ⊥ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biid | ⊢ ( 𝜑 ↔ 𝜑 ) | |
| 2 | notbinot1 | ⊢ ( ¬ ( ¬ 𝜑 ↔ 𝜑 ) ↔ ( 𝜑 ↔ 𝜑 ) ) | |
| 3 | 1 2 | mpbir | ⊢ ¬ ( ¬ 𝜑 ↔ 𝜑 ) | 
| 4 | 3 | bifal | ⊢ ( ( ¬ 𝜑 ↔ 𝜑 ) ↔ ⊥ ) |