Metamath Proof Explorer


Theorem bigolden

Description: Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005)

Ref Expression
Assertion bigolden ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) ↔ ( 𝜓 ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71 ( ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ( 𝜑𝜓 ) ) )
2 pm4.72 ( ( 𝜑𝜓 ) ↔ ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
3 bicom ( ( 𝜑 ↔ ( 𝜑𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ↔ 𝜑 ) )
4 1 2 3 3bitr3ri ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) ↔ ( 𝜓 ↔ ( 𝜑𝜓 ) ) )