Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi | ⊢ ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) | |
| 2 | simplim | ⊢ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |
| 4 | simplim | ⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 → 𝜓 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |