Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi | ⊢ ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) | |
2 | simplim | ⊢ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |
4 | simplim | ⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 → 𝜓 ) ) | |
5 | 3 4 | syl | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |