Metamath Proof Explorer


Theorem biimp3ar

Description: Infer implication from a logical equivalence. Similar to biimpar . (Contributed by NM, 2-Jan-2009)

Ref Expression
Hypothesis biimp3a.1 ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )
Assertion biimp3ar ( ( 𝜑𝜓𝜃 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 biimp3a.1 ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )
2 1 exbiri ( 𝜑 → ( 𝜓 → ( 𝜃𝜒 ) ) )
3 2 3imp ( ( 𝜑𝜓𝜃 ) → 𝜒 )