Description: A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimpor | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( ¬ 𝜑 ↔ 𝜓 ) ∨ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ¬ ( 𝜑 ↔ 𝜓 ) ∨ 𝜒 ) ) | |
| 2 | notbinot2 | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | orbi1i | ⊢ ( ( ¬ ( 𝜑 ↔ 𝜓 ) ∨ 𝜒 ) ↔ ( ( ¬ 𝜑 ↔ 𝜓 ) ∨ 𝜒 ) ) |
| 4 | 1 3 | bitri | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( ¬ 𝜑 ↔ 𝜓 ) ∨ 𝜒 ) ) |