Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimt | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) | |
| 2 | pm2.27 | ⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) | |
| 3 | 1 2 | impbid2 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 → 𝜓 ) ) ) |