Metamath Proof Explorer


Theorem biimtrdi

Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994)

Ref Expression
Hypotheses biimtrdi.1 ( 𝜑 → ( 𝜓𝜒 ) )
biimtrdi.2 ( 𝜒𝜃 )
Assertion biimtrdi ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 biimtrdi.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 biimtrdi.2 ( 𝜒𝜃 )
3 1 biimpd ( 𝜑 → ( 𝜓𝜒 ) )
4 3 2 syl6 ( 𝜑 → ( 𝜓𝜃 ) )