Metamath Proof Explorer


Theorem biimtrrdi

Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses biimtrrdi.1 ( 𝜑 → ( 𝜒𝜓 ) )
biimtrrdi.2 ( 𝜒𝜃 )
Assertion biimtrrdi ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 biimtrrdi.1 ( 𝜑 → ( 𝜒𝜓 ) )
2 biimtrrdi.2 ( 𝜒𝜃 )
3 1 biimprd ( 𝜑 → ( 𝜓𝜒 ) )
4 3 2 syl6 ( 𝜑 → ( 𝜓𝜃 ) )